Integrating network pharmacology and experimental verification to reveal the ferroptosis-associated mechanism of Changpu-Yizhi-Wan in the treatment of Alzheimer's disease

Amberger JS, Bocchini CA, Scott AF, Hamosh A (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47(D1):D1038–D1043. https://doi.org/10.1093/nar/gky1151

Article  CAS  PubMed  Google Scholar 

Bu J, Zhang Y, Mahan Y, Shi S, Wu X, Zhang X, Wang Z, Zhou L (2022) Acacetin improves cognitive function of APP/PS1 Alzheimer’s disease model mice via the NLRP3 inflammasome signaling pathway. Transl Neurosci 13(1):390–397. https://doi.org/10.1515/tnsci-2022-0254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ (2023) Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res 51(D1):D1257–D1262. https://doi.org/10.1093/nar/gkac833

Article  CAS  PubMed  Google Scholar 

Deng C, Chen H, Meng Z et al (2022) Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 13:955618–955618. https://doi.org/10.3389/fendo.2022.955618

Article  PubMed  Google Scholar 

Deng L, He S, Guo N, Tian W, Zhang W, Luo L (2023) Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res 72(2):281–299. https://doi.org/10.1007/s00011-022-01672-1

Article  CAS  PubMed  Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q (2021) Inhibiting ferroptosis through disrupting the NCOA4-FTH1 Interaction: A new mechanism of action. ACS Cent Sci 7(6):980–989. https://doi.org/10.1021/acscentsci.0c01592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y, Liu X (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol 289:115021. https://doi.org/10.1016/j.jep.2022.115021

Article  CAS  PubMed  Google Scholar 

Gadhave K, Kumar D, Uversky VN et al (2021) A multitude of signaling pathways associated with Alzheimer’s disease and their roles in AD pathogenesis and therapy. Med Res Rev 41:2689–2745. https://doi.org/10.1002/med.21719

Article  CAS  PubMed  Google Scholar 

Gleason A, Bush AI (2021) Iron and ferroptosis as therapeutic targets in alzheimer’s disease. Neurotherapeutics 18(1):252–264. https://doi.org/10.1007/s13311-020-00954-y

Article  PubMed  Google Scholar 

Gui J, Wang L, Liu J et al (2024) Ambient particulate matter exposure induces ferroptosis in hippocampal cells through the GSK3B/Nrf2/GPX4 pathway. Free Radic Biol Med 213:359–370. https://doi.org/10.1016/j.freeradbiomed.2024.01.045

Article  CAS  PubMed  Google Scholar 

Ha S, Moon E, Lee P et al (2012) Acacetin attenuates neuroinflammation via regulation the response to LPS stimuli in vitro and in vivo. Neurochem Res 37:1560–1567. https://doi.org/10.1007/s11064-012-0751-z

Article  CAS  PubMed  Google Scholar 

Han W-M, Chen X-C, Li G-R et al (2020) Acacetin protects against high glucose-induced endothelial cells injury by preserving mitochondrial function via activating Sirt1/Sirt3/AMPK signals. Front Pharmacol 11:607796–607796. https://doi.org/10.3389/fphar.2020.607796

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22(4):266–282. https://doi.org/10.1038/s41580-020-00324-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074

Article  CAS  PubMed  Google Scholar 

Kim DH, Hung TM, Bae KH, Jung JW, Lee S, Yoon BH, Cheong JH, Ko KH, Ryu JH (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur J Pharmacol 542(1–3):129–135. https://doi.org/10.1016/j.ejphar.2006.06.015

Article  CAS  PubMed  Google Scholar 

Lane DJR, Metselaar B, Greenough M, Bush AI, Ayton SJ (2021) Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of alzheimer’s disease. Essays Biochem 65(7):925–940. https://doi.org/10.1042/EBC20210017

Article  CAS  PubMed  Google Scholar 

Lee J, Kwon S, Jin C et al (2022) Traditional east asian herbal medicine treatment for alzheimer’s disease: a systematic review and meta-analysis. Pharmaceuticals (Basel) 15:174. https://doi.org/10.3390/ph15020174

Article  CAS  PubMed  Google Scholar 

Li Y (2016) The relationship of kidney deficiency and phlegm stasis with AD, and the research for the therapy of Bushen-Huatan-Kaiqiao method to AD. Hubei University of Chinese Medicine, Wuhan, China

Google Scholar 

Li M, Meng Z, Yu S, Li J, Wang Y, Yang W, Wu H (2022) Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact 366:110137. https://doi.org/10.1016/j.cbi.2022.110137

Article  CAS  PubMed  Google Scholar 

Long Q, Li T, Zhu Q, He L, Zhao B (2024) SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. J Ethnopharmacol 323:117679. https://doi.org/10.1016/j.jep.2023.117679

Article  CAS  PubMed  Google Scholar 

Miao R, Meng Q, Wang C et al (2022) Bibliometric analysis of network pharmacology in traditional Chinese medicine. Evid Based Complement Alternat Med 2022:1583773–1583773. https://doi.org/10.1155/2022/1583773

Article  PubMed  PubMed Central  Google Scholar 

Pan Y (2015) The research of TCM vitality consolidation treatment theory and it’s effects to Alzheimer’s disease. Hubei University of Chinese Medicine, Wuhan, China

Google Scholar 

Peng W, Ouyang Y, Wang S, Hou J, Zhu Z, Yang Y, Zhou R, Pi R (2022) L-F001, a multifunctional fasudil-lipoic acid dimer prevents RSL3-induced ferroptosis via maintaining iron homeostasis and inhibiting JNK in HT22 cells. Front Cell Neurosci 16:774297. https://doi.org/10.3389/fncel.2022.774297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–D855. https://doi.org/10.1093/nar/gkz1021

Article  CAS  PubMed  Google Scholar 

Scheltens P, De Strooper B, Kivipelto M et al (2021) Alzheimer’s disease. Lancet 397:1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shakir MN, Dugger BN (2022) Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 81:2–15. https://doi.org/10.1093/jnen/nlab122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen X, Li H, Zou WJ et al (2021) Network pharmacology analysis of the therapeutic mechanisms underlying beimu-gualou formula activity against bronchiectasis with In silico molecular docking validation. Evid Based Complement Alternat Med 2021:3656272. https://doi.org/10.1155/2021/3656272

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif