Abdelhamid WG, Mowaad NA, Asaad GF, Galal AF, Mohammed SS, Mostafa OE, Sadek DR, Elkhateb LA (2024) The potential protective effect of Camellia Sinensis in mitigating monosodium glutamate-induced neurotoxicity: biochemical and histological study in male albino rats. Metab Brain Dis 39:953–966. https://doi.org/10.1007/s11011-024-01365-0
Article CAS PubMed PubMed Central Google Scholar
Abdou HM, Mohamed NA, Awad D, El-Qazaz I (2017) βCyfluthrin-induced impairment in neurotransmitters, testicular function, and gene expressions of male rats: the protective role of omega-3. Int J Pharm Sci Res 8(7):2819–2831
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN (2022) The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 155:113799. https://doi.org/10.1016/j.biopha.2022.113799
Article CAS PubMed Google Scholar
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-
Article CAS PubMed Google Scholar
AL-Nasser MN, Mellor IR, Carter WG (2022) Is L-glutamate toxic to neurons and thereby contributes to neuronal loss and neurodegeneration? A systematic review. Brain Sci 12(5):577. https://doi.org/10.3390/brainsci12050577
Article CAS PubMed PubMed Central Google Scholar
Albrakati A (2022) Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. Environ Sci Pollu Res 30(9):24143–24153. https://doi.org/10.1007/s11356-022-23954-1
Ankul SS, Chandran L, Anuragh S, Kaliappan I, Rushendran R, Vellapandian C (2023) A systematic review of the neuropathology and memory decline induced by monosodium glutamate in the Alzheimer’s disease-like animal model. Front Pharmacol 14:1283440. https://doi.org/10.3389/fphar.2023.1283440
Article CAS PubMed PubMed Central Google Scholar
Banerjee A, Mukherjee S, Maji BK (2021) Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: an overview. Toxicol Rep 8:938–961. https://doi.org/10.1016/j.toxrep.2021.04.009
Article CAS PubMed PubMed Central Google Scholar
Beutler E, Kelly BM (1963) The effect of sodium nitrite on red cell GSH. Experientia 19:96–97. https://doi.org/10.1007/BF02148042
Article CAS PubMed Google Scholar
Chakraborty SP (2019) Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol Mech Methods 29(6):389–396. https://doi.org/10.1080/15376516.2018.1528649
Article CAS PubMed Google Scholar
Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J (2022) Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 25(5):1078–1099. https://doi.org/10.1080/1028415X.2020.1840035
Article CAS PubMed Google Scholar
D’Eliseo D, Velotti F (2016) Omega-fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med 5(2):15. https://doi.org/10.3390/jcm5020015
Article CAS PubMed PubMed Central Google Scholar
Das D, Banerjee A, Manna K, Sarkar D, Shil A, Sikdar Ne E, Bhakta M, Mukherjee S, Maji BK (2024) Quercetin counteracts monosodium glutamate to mitigate immunosuppression in the thymus and spleen via redox-guided cellular signaling. Phytomedicine 126:155226. https://doi.org/10.1016/j.phymed.2023.155226
Article CAS PubMed Google Scholar
Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387. https://doi.org/10.1038/aps.2009.24
Article CAS PubMed PubMed Central Google Scholar
Essawy AE, Alkhuriji AF, Soffar AA (2017) Paracetamol overdose induces physiological and pathological aberrations in rat brain. J App Pharm Sci 7(9):185–190
Essawy AE, Abdel-Wahab WM, Sadek IA, Khamis OM (2018) Dual protective effect of ginger and rosemary extracts against CCl4-induced hepatotoxicity in rats. Environ Sci Pollut Res Int 25(20):19510–19517. https://doi.org/10.1007/s11356-018-2129-5
Article CAS PubMed Google Scholar
Essawy AE, Mohamed AI, Ali RG, Ali AM, Abdou HM (2023) Analysis of melatonin-modulating effects against tartrazine-induced neurotoxicity in male rats: biochemical, pathological and immunohistochemical markers. Neurochem Res 48(1):131–141. https://doi.org/10.1007/s11064-022-03723-9
Article CAS PubMed Google Scholar
Essawy AE, Abou-ElNaga OA, Mehanna RA, Badae NM, Elsawy ES, Soffar AA (2024) Comparing the effect of intravenous versus intracranial grafting of mesenchymal stem cells against parkinsonism in a rat model: behavioral, biochemical, pathological and immunohistochemical studies. PLoS ONE 19(2):e0296297. https://doi.org/10.1371/journal.pone.0296297
Fu Y, He Y, Phan K, Bhatia S, Pickford R, Wu P, Dzamko N, Halliday G, Kim W (2022) Increased unsaturated lipids underlie lipid peroxidation in synucleinopathy brain. Acta Neuropathol Commun 10:165. https://doi.org/10.1186/s40478-022-01469-7
Article CAS PubMed PubMed Central Google Scholar
Gbadamosi I, Yawson EO, Akesinro J, Adeleke O, Tokunbo O, Bamisi O, Ibrahim-Abdulkareem R, Awoniran P, Gbadamosi R, Lambe E, Atoyebi A, Bayo-Olugbami AA, Abayomi TA, Arogundade TT (2024) Vitamin D attenuates monosodium glutamate-induced behavioral anomalies, metabolic dysregulation, cholinergic impairment, oxidative stress, and astrogliosis in rats. Neurotoxicology 103:297–309. https://doi.org/10.1016/j.neuro.2024.06.015
Article CAS PubMed Google Scholar
Hajihasani MM, Soheili V, Zirak MR, Sahebkar A, Shakeri A (2020) Natural products as safeguards against monosodium glutamate-induced toxicity. Iran J Basic Med Sci 23(4):416–430. https://doi.org/10.22038/IJBMS.2020.43060.10123
Article PubMed PubMed Central Google Scholar
Hamza RZ, Diab AE (2020) Testicular protective and antioxidant effects of selenium nanoparticles on monosodium glutamate-induced testicular structure alterations in male mice. Toxicol Rep 7:254–260. https://doi.org/10.1016/j.toxrep.2020.01.012
Article CAS PubMed PubMed Central Google Scholar
Hernández-Bautista RJ, Alarcón-Aguilar FJ, Del C, Escobar-Villanueva M, Almanza-Pérez JC, Merino-Aguilar H, Fainstein MK, López-Diazguerrero NE (2014) Biochemical alterations during the obese-aging process in female and male monosodium glutamate-treated mice. Int J Mol Sci 15(7):11473–11494. https://doi.org/10.3390/ijms150711473
Article CAS PubMed PubMed Central Google Scholar
Hussein UK, Hassan NE-HY, Elhalwagy MEA, Zaki AR, Abubakr HO, Nagulapalli Venkata KC, Jang KY, Bishayee A (2017) Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 22(11):1928. https://doi.org/10.3390/molecules22111928
Article CAS PubMed PubMed Central Google Scholar
Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jphs.2020.07.011
Article CAS PubMed Google Scholar
Jump DB, Depner CM, Tripathy S (2012) Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res 53(12):2525–2545. https://doi.org/10.1194/jlr.R027904
Article CAS PubMed PubMed Central Google Scholar
Kanki R, Nakamizo T, Yamashita H, Kihara T, Sawada H, Uemura K, Kawamata J, Shibasaki H, Akaike A, Shimohama S (2004) Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons. Brain Res 1015(1–2):73–81. https://doi.org/10.1016/j.brainres.2004.04.044
留言 (0)