The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow

Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

Article  PubMed  Google Scholar 

Raichle, M. E. The brain’s default mode network. Annu Rev. Neurosci. 38, 433–447 (2015).

Article  CAS  PubMed  Google Scholar 

Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

Article  CAS  PubMed  Google Scholar 

Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeshurun, Y., Nguyen, M. & Hasson, U. Amplification of local changes along the timescale processing hierarchy. Proc. Natl Acad. Sci. USA 114, 9475–9480 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vatansever, D., Menon, D. K. & Stamatakis, E. A. Default mode contributions to automated information processing. Proc. Natl Acad. Sci. USA 114, 12821–12826 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanzoni, L. et al. The role of default mode network in semantic cue integration. NeuroImage 219, 117019 (2020).

Article  PubMed  Google Scholar 

Murphy, C. et al. Modes of operation: a topographic neural gradient supporting stimulus dependent and independent cognition. NeuroImage 186, 487–496 (2019).

Article  PubMed  Google Scholar 

Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 53, 303–317 (2010).

Article  PubMed  Google Scholar 

Murphy, C. et al. Distant from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. NeuroImage 171, 393–401 (2018).

Article  PubMed  Google Scholar 

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karapanagiotidis, T., Bernhardt, B. C., Jefferies, E. & Smallwood, J. Tracking thoughts: exploring the neural architecture of mental time travel during mind-wandering. NeuroImage 147, 272–281 (2017).

Article  PubMed  Google Scholar 

Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smallwood, J. et al. The default mode network in cognition: a topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021).

Article  CAS  PubMed  Google Scholar 

Paquola, C., Amunts, K., Evans, A., Smallwood, J. & Bernhardt, B. Closing the mechanistic gap: the value of microarchitecture in understanding cognitive networks. Trends Cogn. Sci. 26, 873–886 (2022).

Article  PubMed  Google Scholar 

Alves, P. N. et al. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun. Biol. 2, 370 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mantini, D. et al. Default mode of brain function in monkeys. J. Neurosci. 31, 12954–12962 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brincat, S. L., Siegel, M., Von Nicolai, C. & Miller, E. K. Gradual progression from sensory to task-related processing in cerebral cortex. Proc. Natl Acad. Sci. USA 115, E7202–E7211 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirabayashi, T. & Miyashita, Y. Computational principles of microcircuits for visual object processing in the macaque temporal cortex. Trends Neurosci. 37, 178–187 (2014).

Article  CAS  PubMed  Google Scholar 

Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

Article  PubMed  Google Scholar 

Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Cabezas, M. Á., Hacker, J. L. & Zikopoulos, B. A protocol for cortical type analysis of the human neocortex applied on histological samples, the atlas of Von Economo and Koskinas, and magnetic resonance imaging. Front. Neuroanat. 14, 576015 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Royer, J. et al. Myeloarchitecture gradients in the human insula: histological underpinnings and association to intrinsic functional connectivity. NeuroImage 216, 116859 (2020).

Article  PubMed  Google Scholar 

Paquola, C. et al. Convergence of cortical types and functional motifs in the human mesiotemporal lobe. eLife 9, e60673 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldman-Rakic, P. S. & Schwartz, M. L. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216, 755–757 (1982).

Article  CAS  PubMed  Google Scholar 

Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).

Article  CAS  PubMed  Google Scholar 

Godlove, D. C., Maier, A., Woodman, G. F. & Schall, J. D. Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J. Neurosci. 34, 5355–5369 (2014).

Article  CAS 

留言 (0)

沒有登入
gif