Koga, S., Sekiya, H., Kondru, N., Ross, O. A. & Dickson, D. W. Neuropathology and molecular diagnosis of synucleinopathies. Mol. Neurodegener. 16, 83 (2021).
Article CAS PubMed PubMed Central Google Scholar
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
Ayers, J. I., Paras, N. A. & Prusiner, S. B. Expanding spectrum of prion diseases. Emerg. Top Life Sci. 4, 155–167 (2020).
Article CAS PubMed Google Scholar
Arotcarena, M.-L. et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 143, 1462–1475 (2020).
Sharabi, Y., Vatine, G. D. & Ashkenazi, A. Parkinson’s disease outside the brain: targeting the autonomic nervous system. Lancet Neurol. 20, 868–876 (2021).
Article CAS PubMed Google Scholar
Wakabayashi, K., Mori, F., Tanji, K., Orimo, S. & Takahashi, H. Involvement of the peripheral nervous system in synucleinopathies, tauopathies and other neurodegenerative proteinopathies of the brain. Acta Neuropathol. 120, 1–12 (2010).
Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ahn, E. H. et al. Initiation of Parkinson’s disease from gut to brain by δ-secretase. Cell Res. 30, 70–87 (2020).
Challis, C. et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 23, 327–336 (2020).
Article CAS PubMed PubMed Central Google Scholar
Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).
Killinger, B. A. et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci. Transl. Med. 10, eaar5280 (2018).
Article PubMed PubMed Central Google Scholar
Barbour, R. et al. Red blood cells are the major source of α-synuclein in blood. Neurodegener. Dis. 5, 55–59 (2008).
Article CAS PubMed Google Scholar
Tian, C. et al. Erythrocytic α-synuclein as a potential biomarker for Parkinson’s disease. Transl. Neurodegener. 8, 15 (2019).
Article CAS PubMed PubMed Central Google Scholar
Gwoździński, K., Janicka, M., Brzeszczyńska, J. & Luciak, M. Changes in red blood cell membrane structure in patients with chronic renal failure. Acta Biochim. Pol. 44, 99–107 (1997).
Schramm, L. P., Strack, A. M., Platt, K. B. & Loewy, A. D. Peripheral and central pathways regulating the kidney: a study using pseudorabies virus. Brain Res. 616, 251–262 (1993).
Article CAS PubMed Google Scholar
Baek, S. H. et al. Incident Parkinson’s disease in kidney transplantation recipients: a nationwide population-based cohort study in Korea. Sci Rep. 11, 10541 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, I.-K. et al. Increased risk of Parkinson’s disease in patients with end-stage renal disease: a retrospective cohort study. Neuroepidemiology 42, 204–210 (2014).
Nam, G. E. et al. Chronic renal dysfunction, proteinuria, and risk of Parkinson’s disease in the elderly. Mov. Disord. 34, 1184–1191 (2019).
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).
Article CAS PubMed Google Scholar
Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).
Article CAS PubMed Google Scholar
Lin, S.-Y. et al. Association between acute kidney injury and risk of Parkinson disease. Eur. J. Intern. Med. 36, 81–86 (2016).
Sacino, A. N. et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl Acad. Sci. USA 111, 10732–10737 (2014).
Article CAS PubMed PubMed Central Google Scholar
Atik, A., Stewart, T. & Zhang, J. α-Synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 26, 410–418 (2016).
Article CAS PubMed PubMed Central Google Scholar
Barajas, L. & Müller, J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J. Ultrastruct. Res. 43, 107–132 (1973).
Article CAS PubMed Google Scholar
Müller, J. & Barajas, L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J. Ultrastruct. Res. 41, 533–549 (1972).
Calaresu, F. R. & Ciriello, J. Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J. Auton. Nerv. Syst. 3, 311–320 (1981).
Article CAS PubMed Google Scholar
Julian, B. A. et al. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin. Appl. 3, 1029–1043 (2009).
Article CAS PubMed PubMed Central Google Scholar
Tian, D.-Y. et al. Physiological clearance of amyloid-β by the kidney and its therapeutic potential for Alzheimer’s disease. Mol. Psychiatry 26, 6074–6082 (2021).
Article CAS PubMed Google Scholar
Viggiano, D. et al. Mechanisms of cognitive dysfunction in CKD. Nat. Rev. Nephrol. 16, 452–469 (2020).
Rosner, M. H., Husain-Syed, F., Reis, T., Ronco, C. & Vanholder, R. Uremic encephalopathy. Kidney Int. 101, 227–241 (2022).
Article CAS PubMed Google Scholar
Li, X.-Y. et al. Alterations of erythrocytic phosphorylated α-synuclein in different subtypes and stages of Parkinson’s disease. Front. Aging Neurosci. 13, 623977 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Yu, S., Li, F. & Feng, T. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci. Lett. 599, 115–119 (2015).
留言 (0)