Propagation of neuronal micronuclei regulates microglial characteristics

Marquez-Ropero, M., Benito, E., Plaza-Zabala, A. & Sierra, A. Microglial corpse clearance: lessons from macrophages. Front Immunol 11, 506 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

Article  CAS  PubMed  Google Scholar 

Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and disease. Annu Rev Physiol 79, 619–643 (2017).

Article  CAS  PubMed  Google Scholar 

Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

Article  CAS  PubMed  Google Scholar 

Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aarum, J., Sandberg, K., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyamoto, A. et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

Article  CAS  PubMed  Google Scholar 

Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

Article  CAS  PubMed  Google Scholar 

Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

Article  CAS  PubMed  Google Scholar 

Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573 e518 (2020).

Article  CAS  PubMed  Google Scholar 

Hattori, Y. et al. CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to differentiate into microglia. Cell Rep. 42, 112092 (2023).

Article  CAS  PubMed  Google Scholar 

Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

Article  CAS  PubMed  Google Scholar 

Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taketomi, T. & Tsuruta, F. Towards an understanding of microglia and border-associated macrophages. Biology (Basel) 12, 1091 (2023).

CAS  PubMed  Google Scholar 

Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

Article  CAS  PubMed  Google Scholar 

Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

Article  CAS  PubMed  Google Scholar 

Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosher, K. I. et al. Neural progenitor cells regulate microglia functions and activity. Nat. Neurosci. 15, 1485–1487 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640 e624 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

Article  CAS  PubMed  Google Scholar 

Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenech, M. et al. Micronuclei and disease—report of HUMN project workshop at Rennes 2019 EEMGS conference. Mutat. Res. 850-851, 503133 (2020).

Article  CAS  Google Scholar 

Shi, L., Qalieh, A., Lam, M. M., Keil, J. M. & Kwan, K. Y. Robust elimination of genome-damaged c

留言 (0)

沒有登入
gif