Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).
Tervo, D. G. R., Tenenbaum, J. B. & Gershman, S. J. Toward the neural implementation of structure learning. Curr. Opin. Neurobiol. 37, 99–105 (2016).
Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).
Eichenbaum, H. Memory: organization and control. Annu. Rev. Psychol. 68, 19–45 (2017).
Behrens, T. E. J. et al. What is a cognitive map? organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).
Jensen, G. Serial learning. In APA Handbook of Comparative Psychology: Perception, Learning, and Cognition (ed. Call, J.) 385–409 (American Psychological Association, 2017).
Gazes, R. P., Templer, V. L. & Lazareva, O. F. Thinking about order: a review of common processing of magnitude and learned orders in animals. Anim. Cogn. 26, 299–317 (2023).
Gazes, R. P. & Lazareva, O. F. Does cognition differ across species, and how do we know? Lessons from research in transitive inference. J. Exp. Psychol. Anim. Learn. Cogn. 47, 223 (2021).
Treichler, F. R. & van Tilburg, D. Concurrent conditional discrimination tests of transitive inference by macaque monkeys: list linking. J. Exp. Psychol. Anim. Behav. Process. 22, 105 (1996).
Nelli, S., Braun, L., Dumbalska, T., Saxe, A. & Summerfield, C. Neural knowledge assembly in humans and neural networks. Neuron 111, 1504–1516 (2023).
CAS PubMed PubMed Central Google Scholar
Jensen, G., Terrace, H. S. & Ferrera, V. P. Discovering implied serial order through model-free and model-based learning. Front. Neurosci. 13, 878 (2019).
PubMed PubMed Central Google Scholar
Morton, N. W., Schlichting, M. L. & Preston, A. R. Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference. Proc. Natl Acad. Sci. USA 117, 29338–29345 (2020).
CAS PubMed PubMed Central Google Scholar
De Lillo, C., Floreano, D. & Antinucci, F. Transitive choices by a simple, fully connected, backpropagation neural network: implications for the comparative study of transitive inference. Anim. Cogn. 4, 61–68 (2001).
Kay, K. et al. Emergent neural dynamics and geometry for generalization in a transitive inference task. PLOS Comput. Biol. 20, e1011954 (2024).
CAS PubMed PubMed Central Google Scholar
Lippl, S., Kay, K., Jensen, G., Ferrera, V. P. & Abbott, L. F. A mathematical theory of relational generalization in transitive inference. Proc. Natl Acad. Sci. USA 121, e2314511121 (2024).
CAS PubMed PubMed Central Google Scholar
Schmidhuber, J. Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook (diploma thesis). www.bibsonomy.org/bibtex/2a96f7c3d42103ab94b13badef5d869f0/brazovayeye (1987).
Miconi, T. Backpropagation of Hebbian plasticity for continual learning. In Proceedings of NIPS Workshop on Continual Learning (2016).
Wang, J. X. et al. Learning to reinforcement learn. Preprint at https://doi.org/10.48550/arXiv.1611.05763 (2016).
Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860 (2018).
Miconi, T., Rawal, A., Clune, J. & Stanley, K. O. Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity. In Proceedings of International Conference on Learning Representations (2019).
Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In Proceedings of International Conference on Machine Learning (eds Balcan, M. F. & Weinberger K. Q.) Vol. 48, 1928–1937 (PMLR, 2016).
Brunamonti, E. et al. Neuronal modulation in the prefrontal cortex in a transitive inference task: evidence of neuronal correlates of mental schema management. J. Neurosci. 36, 1223–1236 (2016).
CAS PubMed PubMed Central Google Scholar
Lazareva, O. F. & Wasserman, E. A. Transitive inference in pigeons: measuring the associative values of stimuli B and D. Behav. Process. 89, 244–255 (2012).
Treichler, F. R., Raghanti, M. A. & van Tilburg, D. N. Linking of serially ordered lists by macaque monkeys (Macaca mulatta): list position influences. J. Exp. Psychol. Anim. Behav. Process. 29, 211 (2003).
James, W. The Principles of Psychology Vol. 2. (Henry Holt and Company, 1890).
Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).
PubMed PubMed Central Google Scholar
Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).
Tambini, A. & Davachi, L. Awake reactivation of prior experiences consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890 (2019).
PubMed PubMed Central Google Scholar
Shohamy, D. & Daw, N. D. Integrating memories to guide decisions. Curr. Opin. Behav. Sci. 5, 85–90 (2015).
Barron, H. C. et al. Neuronal computation underlying inferential reasoning in humans and mice. Cell 183, 228–243 (2020).
CAS PubMed PubMed Central Google Scholar
Comrie, A. E., Frank, L. M. & Kay, K. Imagination as a fundamental function of the hippocampus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210336 (2022).
PubMed PubMed Central Google Scholar
Kurth-Nelson, Z. et al. Replay and compositional computation. Neuron 111, 454–469 (2023).
Iordanova, M. D., Good, M. & Honey, R. C. Retrieval-mediated learning involving episodes requires synaptic plasticity in the hippocampus. J. Neurosci. 31, 7156–7162 (2011).
CAS PubMed PubMed Central Google Scholar
Hall, G. Learning about associatively activated stimulus representations: implications for acquired equivalence and perceptual learning. Anim. Learn. Behav. 24, 233–255 (1996).
Zeithamova, D., Dominick, A. L. & Preston, A. R. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75, 168–179 (2012).
CAS PubMed PubMed Central Google Scholar
Hafner, D., Lillicrap, T., Ba, J. & Norouzi, M. Dream to control: learning behaviors by latent imagination. Preprint at https://doi.org/10.48550/arXiv.1912.01603 (2019).
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).
CAS PubMed PubMed Central Google Scholar
Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X.-J. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).
CAS PubMed PubMed Central Google Scholar
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H. (eds). Organizing recurrent network dynamics by task-computation to enable continual learning. In Proceedings of Advances in Neural Information Processing Systems Vol. 33, 14387–14397 (Curran Associates, 2020).
Thrun, S. & Pratt, L. (eds). Learning to Learn: Introduction and Overview 3–17 (Kluwer Academic Publishers, 1998).
Harlow, H. F. The formation of learning sets. Psychol. Rev. 56, 51–65 (1949).
Duan, Y. et al. RL2: fast reinforcement learning via slow reinforcement learning. Preprint at https://doi.org/10.48550/arXiv.1611.02779 (2016).
Miconi, T., Clune, J. & Stanley, K. O. Differentiable plasticity: training plastic networks with gradient descent. In Proc. 35th International Conference on Machine Learning (eds Dy, J. & Krause, A.) Vol. 80, 3559–3568 (PMLR, 2018).
Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. Meta-learning with memory-augmented neural networks. In Proc. 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) Vol. 48, 1842–1850 (PMLR, 2016).
Bryant, P. E. & Trabasso, T. Transitive inferences and memory in young children. Nature 232, 456–458 (1971).
留言 (0)