Abraham A, Pedregosa F, Eickenberg M et al (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinform. https://doi.org/10.3389/fninf.2014.00014. 8:
Article PubMed PubMed Central Google Scholar
Borgeest G, Henson R, Kietzmann T et al (2021) A morphometric double dissociation: cortical thickness is more related to aging; surface area is more related to cognition. bioRxiv
Camargo A, Del Mauro G, Wang Z (2024) Task-induced changes in brain entropy. J Neurosci Res 102. https://doi.org/10.1002/jnr.25310
Carhart-Harris RL (2018) The entropic brain - revisited. Neuropharmacology 142:167–178. https://doi.org/10.1016/j.neuropharm.2018.03.010
Article CAS PubMed Google Scholar
Chang D, Song D, Zhang J et al (2018a) Caffeine caused a widespread increase of resting brain entropy. Sci Rep 8:2700. https://doi.org/10.1038/s41598-018-21008-6
Article CAS PubMed PubMed Central Google Scholar
Chang D, Zhang J, Peng W et al (2018b) Smoking Cessation with 20 hz repetitive transcranial magnetic stimulation (rTMS) Applied to two brain regions: a pilot study. Front Hum Neurosci 12. https://doi.org/10.3389/fnhum.2018.00344
Cox SR, Bastin ME, Ritchie SJ et al (2018) Brain cortical characteristics of lifetime cognitive ageing. Brain Struct Funct 223:509–518. https://doi.org/10.1007/s00429-017-1505-0
Decasien AR, Guma E, Liu S, Raznahan A (2022) Sex differences in the human brain: a roadmap for more careful analysis and interpretation of a biological reality. Biol Sex Differ 1–21. https://doi.org/10.1186/s13293-022-00448-w
Del Mauro G, Wang Z (2023) Associations of Brain Entropy estimated by resting state fMRI with physiological indices, body Mass Index, and Cognition. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28948
Article PubMed PubMed Central Google Scholar
Glasser MF, Sotiropoulos SN, Wilson JA et al (2013) The minimal preprocessing pipelines for the human Connectome Project. NeuroImage 80:105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127
He BJ (2011) Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786–13795. https://doi.org/10.1523/JNEUROSCI.2111-11.2011
Article CAS PubMed PubMed Central Google Scholar
Jiang W, Cai L, Wang Z (2023) Common hyper-entropy patterns identified in nicotine smoking, marijuana use, and alcohol use based on uni-drug dependence cohorts. Med Biol Eng Comput. https://doi.org/10.1007/s11517-023-02932-w
Article PubMed PubMed Central Google Scholar
Jordan T, Apostol MR, Nomi J, Petersen N (2024) Unraveling neural complexity: exploring brain entropy to yield mechanistic insight in neuromodulation therapies for tobacco use disorder. Imaging Neurosci 2:1–17. https://doi.org/10.1162/imag_a_00061
Keshmiri S (2020) Entropy and the brain: an overview. Entropy 22:917. https://doi.org/10.3390/e22090917
Article PubMed PubMed Central Google Scholar
Li Z, Fang Z, Hager N et al (2016) Hyper-resting brain entropy within chronic smokers and its moderation by sex. Sci Rep 6:29435. https://doi.org/10.1038/srep29435
Article CAS PubMed PubMed Central Google Scholar
Lin C, Lee S-H, Huang C-M et al (2019) Increased brain entropy of resting-state fMRI mediates the relationship between depression severity and mental health-related quality of life in late-life depressed elderly. J Affect Disord 250:270–277. https://doi.org/10.1016/j.jad.2019.03.012
Lin L, Chang D, Song D et al (2022) Lower resting brain entropy is associated with stronger task activation and deactivation. NeuroImage 249:118875. https://doi.org/10.1016/j.neuroimage.2022.118875
Liu X, Song D, Yin Y et al (2020a) Altered brain entropy as a predictor of antidepressant response in major depressive disorder. J Affect Disord 260:716–721. https://doi.org/10.1016/j.jad.2019.09.067
Liu X, Song D, Yin Y et al (2020b) Altered brain entropy as a predictor of antidepressant response in major depressive disorder. J Affect Disord 260:716–721. https://doi.org/10.1016/j.jad.2019.09.067
Liu P-S, Song D-H, Deng X-P et al (2024) Intermittent theta burst stimulation (iTBS)-induced changes of resting-state brain entropy (BEN). bioRxiv 2024.05.15.591015. https://doi.org/10.1101/2024.05.15.591015
Lotze M, Domin M, Gerlach FH et al (2019) Novel findings from 2,838 adult brains on sex differences in gray matter brain volume. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-018-38239-2
Mountcastle V (1997) The columnar organization of the neocortex. Brain 120:701–722. https://doi.org/10.1093/brain/120.4.701
Panizzon MS, Fennema-Notestine C, Eyler LT et al (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19:2728–2735. https://doi.org/10.1093/cercor/bhp026
Article PubMed PubMed Central Google Scholar
Rakic P (1988) Specification of cerebral cortical areas. Sci (1979) 241:170–176. https://doi.org/10.1126/science.3291116
Rakic P (2008) Confusing cortical columns. Proc Natl Acad Sci 105:12099–12100. https://doi.org/10.1073/pnas.0807271105
Article PubMed PubMed Central Google Scholar
Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.:H2039–H2049
Ritchie SJ, Cox SR, Shen X et al (2018) Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex 28:2959–2975. https://doi.org/10.1093/cercor/bhy109
Article PubMed PubMed Central Google Scholar
Ruigrok ANV, Salimi-Khorshidi G, Lai MC et al (2014) A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev 39:34–50. https://doi.org/10.1016/j.neubiorev.2013.12.004
Article PubMed PubMed Central Google Scholar
Santarnecchi E, Emmendorfer A, Pascual-Leone A (2017a) Dissecting the parieto-frontal correlates of fluid intelligence: a comprehensive ALE meta-analysis study. Intelligence 63:9–28. https://doi.org/10.1016/j.intell.2017.04.008
Santarnecchi E, Emmendorfer A, Tadayon S et al (2017b) Network connectivity correlates of variability in fluid intelligence performance. Intelligence 65:35–47. https://doi.org/10.1016/j.intell.2017.10.002
Sele S, Liem F, Mérillat S, Jäncke L (2021) Age-related decline in the brain: a longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition. NeuroImage 240:118370. https://doi.org/10.1016/j.neuroimage.2021.118370
Seyedsalehi A, Warrier V, Bethlehem RAI et al (2023) Educational attainment, structural brain reserve and Alzheimer’s disease: a Mendelian randomization analysis. Brain 146:2059–2074. https://doi.org/10.1093/brain/awac392
Shi L, Beaty RE, Chen Q et al (2019) Brain entropy is Associated with Divergent thinking. Cereb Cortex. https://doi.org/10.1093/cercor/bhz120
Article PubMed PubMed Central Google Scholar
Song D, Chang D, Zhang J et al (2019a) Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain. Brain Imaging Behav 13:1486–1495. https://doi.org/10.1007/s11682-018-9963-4
Song D, Chang D, Zhang J et al (2019b) Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults. Brain Imaging Behav 13:421–429. https://doi.org/10.1007/s11682-018-9866-4
Song D-H, Deng X-P, Shang Y-Q et al (2024) Altered resting-state brain entropy (BEN) by rTMS across the human cortex. https://doi.org/10.1101/2024.07.16.601109. bioRxiv 2024.07.16.601109
Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11:1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6
留言 (0)