ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global–local feature learning for brain age prediction

Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci 91(15):7041–7045. https://doi.org/10.1073/pnas.91.15.7041

Article  PubMed  PubMed Central  Google Scholar 

Amiri Roudbar M, Mousavi SF, Salek Ardestani S, Lopes FB, Momen M, Gianola D, Khatib H (2021) Prediction of biological age and evaluation of genome-wide dynamic methylomic changes throughout human aging. G3 11(7):112. https://doi.org/10.1093/g3journal/jkab112

Article  Google Scholar 

Ballester PL, Suh JS, Ho NC, Liang L, Hassel S, Strother SC, Arnott SR, Minuzzi L, Sassi RB, Lam RW et al (2023) Gray matter volume drives the brain age gap in schizophrenia: a shap study. Schizophrenia 9(1):3. https://doi.org/10.1038/s41537-022-00330-z

Article  PubMed  PubMed Central  Google Scholar 

Bashyam VM, Erus G, Doshi J, Habes M, Nasrallah IM, Truelove-Hill M, Srinivasan D, Mamourian L, Pomponio R, Fan Y et al (2020) Mri signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 143(7):2312–2324. https://doi.org/10.1093/brain/awaa160

Article  PubMed  PubMed Central  Google Scholar 

Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9(3):182–194. https://doi.org/10.1038/nrn2335

Article  PubMed  Google Scholar 

Brendel W, Bethge M (2019) Approximating cnns with bag-of-local-features models works surprisingly well on imagenet. arXiv:1904.00760

Cai H, Gao Y, Liu M (2022) Graph transformer geometric learning of brain networks using multimodal mr images for brain age estimation. IEEE Trans Med Imaging 42(2):456–466. https://doi.org/10.1109/TMI.2022.3222093

Article  Google Scholar 

Chang Y, Thornton V, Chaloemtoem A, Anokhin AP, Bijsterbosch J, Bogdan R, Hancock DB, Johnson EO, Bierut LJ (2024) Investigating the relationship between smoking behavior and global brain volume. Biol Psychiatry Global Open Sci 4(1):74–82. https://doi.org/10.1016/j.bpsgos.2023.09.006

Article  Google Scholar 

Chen JV, Chaudhari G, Hess CP, Glenn OA, Sugrue LP, Rauschecker AM, Li Y (2022) Deep learning to predict neonatal and infant brain age from myelination on brain mri scans. Radiology 305(3):678–687. https://doi.org/10.1148/radiol.211860

Article  PubMed  Google Scholar 

Cheng J, Liu Z, Guan H, Wu Z, Zhu H, Jiang J, Wen W, Tao D, Liu T (2021) Brain age estimation from mri using cascade networks with ranking loss. IEEE Trans Med Imaging 40(12):3400–3412. https://doi.org/10.1109/TMI.2021.3085948

Article  PubMed  Google Scholar 

Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD, Montana G (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124. https://doi.org/10.1016/j.neuroimage.2017.07.059

Article  PubMed  Google Scholar 

Cullen KR, Wallace S, Magnotta VA, Bockholt J, Ehrlich S, Gollub RL, Manoach DS, Ho BC, Clark VP, Lauriello J et al (2012) Cigarette smoking and white matter microstructure in schizophrenia. Psychiatry Res Neuroimag 201(2):152–158. https://doi.org/10.1016/j.pscychresns.2011.08.010

Article  Google Scholar 

Cumplido-Mayoral I, García-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, Milà-Alomà M, Lorenzini L, Ingala S, Wink AM et al (2023) Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of alzheimer’s disease and neurodegeneration stratified by sex. Elife 12:81067. https://doi.org/10.7554/eLife.81067

Article  Google Scholar 

Daviet R, Aydogan G, Jagannathan K, Spilka N, Koellinger PD, Kranzler HR, Nave G, Wetherill RR (2022) Associations between alcohol consumption and gray and white matter volumes in the uk biobank. Nat Commun 13(1):1175. https://doi.org/10.1038/s41467-022-28735-5

Article  PubMed  PubMed Central  Google Scholar 

Ding W, Shen XJ, Huang J, Ju H, Chen Y, Yin T (2023) Brain age prediction based on resting-state functional mri using similarity metric convolutional neural network. IEEE Access 11:57071–57082. https://doi.org/10.1109/ACCESS.2023.3283148

Article  Google Scholar 

Dufumier B, Gori P, Battaglia I, Victor J, Grigis A, Duchesnay E (2021) Benchmarking cnn on 3d anatomical brain mri: architectures, data augmentation and deep ensemble learning. arXiv preprint arXiv:2106.01132

Etkind SN, Bone AE, Gomes B, Lovell N, Evans CJ, Higginson IJ, Murtagh F (2017) How many people will need palliative care in 2040? past trends, future projections and implications for services. BMC Med 15(1):1–10. https://doi.org/10.1186/s12916-017-0860-2

Article  Google Scholar 

He S, Grant PE, Ou Y (2021) Global-local transformer for brain age estimation. IEEE Trans Med Imaging 41(1):213–224. https://doi.org/10.1109/TMI.2021.3108910

Article  PubMed  PubMed Central  Google Scholar 

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

Hofmann SM, Beyer F, Lapuschkin S, Goltermann O, Loeffler M, Müller KR, Villringer A, Samek W, Witte AV (2022) Towards the interpretability of deep learning models for multi-modal neuroimaging: finding structural changes of the ageing brain. Neuroimage 261:119504. https://doi.org/10.1016/j.neuroimage.2022.119504

Article  PubMed  Google Scholar 

Huo X, Sun G, Tian S, Wang Y, Yu L, Long J, Zhang W, Li A (2024) Hifuse: Hierarchical multi-scale feature fusion network for medical image classification. Biomed Signal Process Control 87:105534. https://doi.org/10.1016/j.bspc.2023.105534

Article  Google Scholar 

Hwang I, Yeon EK, Lee JY, Yoo RE, Kang KM, Yun TJ, Choi SH, Sohn CH, Kim H, Kim JH (2021) Prediction of brain age from routine t2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network. Neurobiol Aging 105:78–85. https://doi.org/10.1016/j.neurobiolaging.2021.04.015

Article  PubMed  Google Scholar 

Izekenova AK, Kumar AB, Abikulova AK, Izekenova AK (2015) Trends in ageing of the population and the life expectancy after retirement: a comparative country-based analysis. J Res Med Sci 20(3):250

Article  PubMed  PubMed Central  Google Scholar 

Jazwinski SM, Kim S (2017) Metabolic and genetic markers of biological age. Front Genet 8:64. https://doi.org/10.3389/fgene.2017.00064

Article  PubMed  PubMed Central  Google Scholar 

Johansson L, Guo X, Sacuiu S, Fässberg MM, Kern S, Zettergren A, Skoog I (2023) Longstanding smoking associated with frontal brain lobe atrophy: a 32-year follow-up study in women. BMJ Open 13(10):072803. https://doi.org/10.1136/bmjopen-2023-072803

Article  Google Scholar 

Kaleybar JM, Saadat H, Khaloo H (2023) Capturing local and global features in medical images by using ensemble cnn-transformer. In: 2023 13th international conference on computer and knowledge engineering (ICCKE), pp 030–035. https://doi.org/10.1109/ICCKE60553.2023.10326274. IEEE

Kawaguchi M, Kidokoro H, Ito R, Shiraki A, Suzuki T, Maki Y, Tanaka M, Sakaguchi Y, Yamamoto H, Takahashi Y et al (2021) Age estimates from brain magnetic resonance images of children younger than two years of age using deep learning. Magn Reson Imaging 79:38–44. https://doi.org/10.1016/j.mri.2021.03.004

Article  PubMed  Google Scholar 

Khanna P, Bhat PS, Jacob J (2017) Frontal lobe executive dysfunction and cerebral perfusion study in alcohol dependence syndrome. Ind Psychiatry J 26(2):134–139. https://doi.org/10.4103/ipj.ipj_26_18

Article  PubMed  PubMed Central  Google Scholar 

Kuo CY, Tai TM, Lee PL, Tseng CW, Chen CY, Chen LK, Lee CK, Chou KH, See S, Lin CP (2021) Improving individual brain age prediction using an ensemble deep learning framework. Front Psych 12:626677. https://doi.org/10.3389/fpsyt.2021.626677

Article  Google Scholar 

Lai Z-H, Zhang T-H, Liu Q, Qian X, Wei L-F, Chen S-L, Chen F, Yin X-C (2023) Interformer: Interactive local and global features fusion for automatic speech recognition. Network 100:2. https://doi.org/10.48550/arXiv.2305.16342

Article  Google Scholar 

Lange A-MG, Leonardsen EH, Barth C, Schindler LS, Crestol A, Holm MC, Subramaniapillai S, Hill D, Alnæs D, Westlye LT (2024) Parental status and markers of brain and cellular age: A 3d convolutional network and classification study. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2024.107040

Article  PubMed  Google Scholar 

Leonardsen EH, Peng H, Kaufmann T, Agartz I, Andreassen OA, Celius EG, Espeseth T, Harbo HF, Høgestøl EA, De Lange AM et al (2022) Deep neural networks learn general and clinically relevant representations of the ageing brain. Neuroimage 256:119210. https://doi.org/10.1016/j.neuroimage.2022.119210

Article  PubMed  Google Scholar 

Lin L, Xiong M, Jin Y, Kang W, Wu S, Sun S, Fu Z (2023) Quantifying brain and cognitive maintenance as key indicators for sustainable cognitive aging: Insights from the uk biobank. Sustainability 15(12):9620. https://doi.org/10.3390/su15129620

Article  Google Scholar 

Linli Z, Feng J, Zhao W, Guo S (2022) Associations between smoking and accelerated brain ageing. Prog Neuropsychopharmacol Biol Psychiatry 113:110471. https://doi.org/10.1016/j.pnpbp.2021.110471

Article  PubMed  Google Scholar 

Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks. Adv Neural Inf Process Syst 29

Madala VC, Chandrasekaran S (2022) Cnns are myopic. Preprint at

留言 (0)

沒有登入
gif