Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, Suri S, Avery SV, Larvin JT, Garas FN, Garas SN, Vinciati F, Morin S, Bezard E, Baufreton J, Magill PJ (2015) Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci 35:6667–6688. https://doi.org/10.1523/JNEUROSCI.4662-14.2015
Article PubMed PubMed Central CAS Google Scholar
Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, Hayakawa Y, Okano HJ, Sakakibara S-I, Takano H, Takano T, Takahashi T, Noda T, Okano H (2005) The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci U S A 102:4625–4630. https://doi.org/10.1073/pnas.0407523102
Article PubMed PubMed Central CAS Google Scholar
Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271. https://doi.org/10.1016/0166-2236(90)90107-L
Article PubMed CAS Google Scholar
Alkemade A, Forstmann BU (2014) Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? Neuroimage 95:326–329. https://doi.org/10.1016/j.neuroimage.2014.03.010
Alkemade A, de Hollander G, Miletic S, Keuken MC, Balesar R, de Boer O, Swaab DF, Forstmann BU (2019) The functional microscopic neuroanatomy of the human subthalamic nucleus. Brain Struct Funct 224:3213–3227. https://doi.org/10.1007/s00429-019-01960-3
Article PubMed PubMed Central Google Scholar
Altman J, Bayer SA (1979a) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188:455–471. https://doi.org/10.1002/cne.901880308
Article PubMed CAS Google Scholar
Altman J, Bayer SA (1979b) Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J Comp Neurol 188:473–499. https://doi.org/10.1002/cne.901880309
Article PubMed CAS Google Scholar
Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178
Article PubMed CAS Google Scholar
Arena G, Londei F, Ceccarelli F, Ferrucci L, Borra E, Genovesio A (2024) Disentangling the identity of the zona incerta: a review of the known connections and latest implications. Ageing Res Rev 93:102140. https://doi.org/10.1016/j.arr.2023.102140
Article PubMed CAS Google Scholar
Barbier M, Croizier S, Alvarez-Bolado G, Risold P-Y (2022) The distribution of Dlx1-2 and glutamic acid decarboxylase in the embryonic and adult hypothalamus reveals three differentiated LHA subdivisions in rodents. J Chem Neuroanat 121:102089. https://doi.org/10.1016/j.jchemneu.2022.102089
Article PubMed CAS Google Scholar
Bayer SA, Altman J (2004) The human brain during the third trimester. Atlas of human central nervous system development, vol 2. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9780203494943
Bayer SA, Altman J (2005) The human brain during the second trimester. Atlas of human central nervous system development, vol 3. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9780203507483
Bayer SA, Altman J (2006) The human brain during the late first trimester. Atlas of human central nervous system development series, vol 4. CRC Press, Boca Raton. https://doi.org/10.1201/9781420003277
Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81. https://doi.org/10.1016/S1474-4422(08)70291-6
Bobić Rasonja M, Orešković D, Knezović V, Pogledić I, Pupačić D, Vukšić M, Brugger PC, Prayer D, Petanjek Z, Jovanov Milošević N (2019) Histological and MRI Study of the development of the human indusium griseum. Cereb Cortex 29:4709–4724. https://doi.org/10.1093/cercor/bhz004
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G (2021) The stereological analysis and spatial distribution of neurons in the human subthalamic nucleus. Front Neuroanat 15:749390. https://doi.org/10.3389/fnana.2021.749390
Article PubMed PubMed Central CAS Google Scholar
Bokulić E, Medenica T, Sedmak G (2022) Transcriptional profile of the developing subthalamic nucleus. eNeuro. https://doi.org/10.1523/ENEURO.0193-22.2022
Article PubMed PubMed Central Google Scholar
Bulfone A, Menguzzato E, Broccoli V, Marchitiello A, Gattuso C, Mariani M, Consalez GG, Martinez S, Ballabio A, Banfi S (2000) Barhl1, a gene belonging to a new subfamily of mammalian homeobox genes, is expressed in migrating neurons of the CNS. Hum Mol Genet 9:1443–1452. https://doi.org/10.1093/hmg/9.9.1443
Cardoso T, Adler AF, Mattsson B, Hoban DB, Nolbrant S, Wahlestedt JN, Kirkeby A, Grealish S, Björklund A, Parmar M (2018) Target-specific forebrain projections and appropriate synaptic inputs of hESC-derived dopamine neurons grafted to the midbrain of parkinsonian rats. J Comp Neurol 526:2133–2146. https://doi.org/10.1002/cne.24500
Article PubMed PubMed Central CAS Google Scholar
Caron E, Sachot C, Prevot V, Bouret SG (2010) Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J Comp Neurol 518:459–476. https://doi.org/10.1002/cne.22219
Article PubMed CAS Google Scholar
Cartwright P, Helin K (2000) Nucleocytoplasmic shuttling of transcription factors. Cell Mol Life Sci 57:1193–1206. https://doi.org/10.1007/PL00000759
Article PubMed PubMed Central CAS Google Scholar
de Luzy IR, Niclis JC, Gantner CW, Kauhausen JA, Hunt CPJ, Ermine C, Pouton CW, Thompson LH, Parish CL (2019) Isolation of LMX1a ventral midbrain progenitors improves the safety and predictability of human pluripotent stem cell-derived neural transplants in parkinsonian disease. J Neurosci 39:9521–9531. https://doi.org/10.1523/JNEUROSCI.1160-19.2019
Article PubMed PubMed Central Google Scholar
Deng Y, Wang H, Joni M, Sekhri R, Reiner A (2021) Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington’s disease mice. J Comp Neurol 529:1327–1371. https://doi.org/10.1002/cne.25023
Article PubMed CAS Google Scholar
Diaz C, Puelles L (2020) Developmental genes and malformations in the hypothalamus. Front Neuroanat 14:607111. https://doi.org/10.3389/fnana.2020.607111
Article PubMed PubMed Central CAS Google Scholar
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L (2023) Dorsoventral arrangement of lateral hypothalamus populations in the mouse hypothalamus: a prosomeric genoarchitectonic analysis. Mol Neurobiol 60:687–731. https://doi.org/10.1007/s12035-022-03043-7
Article PubMed CAS Google Scholar
Emmi A, Antonini A, Macchi V, Porzionato A, de Caro R (2020) Anatomy and connectivity of the subthalamic nucleus in humans and non-human primates. Front Neuroanat 14:13. https://doi.org/10.3389/fnana.2020.00013
Article PubMed PubMed Central Google Scholar
Evans EE, Mishra V, Mallow C, Gersz EM, Balch L, Howell A, Reilly C, Smith ES, Fisher TL, Zauderer M (2022) Semaphorin 4D is upregulated in neurons of diseased brains and triggers astrocyte reactivity. J Neuroinflammation 19:200. https://doi.org/10.1186/s12974-022-02509-8
Article PubMed PubMed Central CAS Google Scholar
Favero CB, Henshaw RN, Grimsley-Myers CM, Shrestha A, Beier DR, Dwyer ND (2013) Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain. J Comp Neurol 521:677–696. https://doi.org/10.1002/cne.23199
Article PubMed PubMed Central CAS Google Scholar
Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol 460:266–279. https://doi.org/10.1002/cne.10654
留言 (0)