Genome sequences of four Ixodes species expands understanding of tick evolution

Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3-14.

Article  PubMed  Google Scholar 

Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, et al. Ancestral reconstruction of tick lineages. Ticks Tick-Borne Dis. 2016;7:509–35.

Article  PubMed  Google Scholar 

Dunlop JA. Geological history and phylogeny of Chelicerata. Arthropod Struct Dev. 2010;39:124–42.

Article  PubMed  Google Scholar 

Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, et al. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. 2014;31:2963–84.

Article  CAS  PubMed  Google Scholar 

Lozano-Fernandez J, Tanner AR, Giacomelli M, Carton R, Vinther J, Edgecombe GD, et al. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat Commun. 2019;10:2295.

Article  PubMed  PubMed Central  Google Scholar 

Ballesteros JA, Santibáñez López CE, Kováč Ľ, Gavish-Regev E, Sharma PP. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. Proc R Soc B Biol Sci. 2019;286:20192426.

Zhang Y-X, Chen X, Wang J-P, Zhang Z-Q, Wei H, Yu H-Y, et al. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics. 2019;20:954.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma PP, Ballesteros JA, Santibáñez-López CE. What is an “arachnid”? Consensus, consilience, and confirmation bias in the phylogenetics of Chelicerata. Diversity. 2021;13:568.

Article  CAS  Google Scholar 

Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa. 2010;2528:1–28.

Article  Google Scholar 

Mans BJ, de Klerk D, Pienaar R, Latif AA. Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks. PLoS ONE. 2011;6: e23675.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA. The mitochondrial genomes of Nuttalliella namaqua (Ixodea: Nuttalliellidae) and Argas africolumbae (Ixodae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters. PLoS ONE. 2012;7.

Mans BJ. Chemical equilibrium at the tick–host feeding interface: a critical examination of biological relevance in hematophagous behavior. Front Physiol. 2019;10.

Medina JM, Jmel MA, Cuveele B, Gómez-Martín C, Aparicio-Puerta E, Mekki I, et al. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front Cell Infect Microbiol. 2022;12.

Mans BJ, Featherston J, de Castro MH, Pienaar R. Gene duplication and protein evolution in tick-host interactions. Front Cell Infect Microbiol. 2017;7.

Geraci NS, Spencer Johnston J, Paul Robinson J, Wikel SK, Hill CA. Variation in genome size of argasid and ixodid ticks. Insect Biochem Mol Biol. 2007;37:399–408.

Article  CAS  PubMed  Google Scholar 

Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia N, Wang J, Shi W, Du L, Sun Y, Zhan W, et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell. 2020;182:1328-1340.e13.

Article  CAS  PubMed  Google Scholar 

De S, Kingan SB, Kitsou C, Portik DM, Foor SD, Frederick JC, et al. A high-quality Ixodes scapularis genome advances tick science. Nat Genet. 2023;55:301–11.

Article  CAS  PubMed  Google Scholar 

Nuss AB, Lomas JS, Reyes JB, Garcia-Cruz O, Lei W, Sharma A, et al. The highly improved genome of Ixodes scapularis with X and Y pseudochromosomes. Life Sci Alliance. 2023;6.

Charrier NP, Hermouet A, Hervet C, Agoulon A, Barker SC, Heylen D, et al. A transcriptome-based phylogenetic study of hard ticks (Ixodidae). Sci Rep. 2019;9.

Keirans JE, Needham GR, Oliver Jr JR. The Ixodes ricinus complex worldwide: diagnosis of the species in the complex, hosts and distribution. In: Acarology IX: Symposia. Colombus, Ohio; 1999. p. 341–7.

Xu G, Fang QQ, Keirans JE, Durden LA. Molecular phylogenetic analyses indicate that the ixodes ricinus complex is a paraphyletic group. J Parasitol. 2003;89:452–7.

Article  CAS  PubMed  Google Scholar 

Sands AF, Apanaskevich DA, Matthee S, Horak IG, Harrison A, Karim S, et al. Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks. Mol Phylogenet Evol. 2017;114:153–65.

Article  PubMed  Google Scholar 

Oliver JH. Cytogenetics of mites and ticks. Annu Rev Entomol. 1977;22:407–29.

Article  PubMed  Google Scholar 

Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, et al. A draft of the genome of the Gulf Coast tick. Amblyomma maculatum Ticks Tick-Borne Dis. 2023;14: 102090.

Article  PubMed  Google Scholar 

Van Dam MH, Trautwein M, Spicer GS, Esposito L. Advancing mite phylogenomics: designing ultraconserved elements for Acari phylogeny. Mol Ecol Resour. 2019;19:465–75.

Article  PubMed  Google Scholar 

Medina JM, Abbas MN, Bensaoud C, Hackenberg M, Kotsyfakis M. Bioinformatic analysis of Ixodes ricinus long non-coding RNAs predicts their binding ability of host miRNAs. Int J Mol Sci. 2022;23:9761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donohue KV, Khalil SMS, Ross E, Grozinger CM, Sonenshine DE, Michael RR. Neuropeptide signaling sequences identified by pyrosequencing of the American dog tick synganglion transcriptome during blood feeding and reproduction. Insect Biochem Mol Biol. 2010;40:79–90.

Article  CAS  PubMed  Google Scholar 

Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, et al. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick-Borne Dis. 2022;13: 101910.

Article  PubMed  PubMed Central  Google Scholar 

Meyer H, Buhr A, Callaerts P, Schiemann R, Wolfner MF, Marygold SJ. Identification and bioinformatic analysis of neprilysin and neprilysin-like metalloendopeptidases in Drosophila melanogaster. MicroPublication Biol. 2021;2021.

Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol. 2008;8:16.

Article  PubMed  PubMed Central  Google Scholar 

Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M. Tick salivary Kunitz-type inhibitors: targeting host hemostasis and immunity to mediate successful blood feeding. Int J Mol Sci. 2023;24:1556.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francischetti IMB, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JMC. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99:3602–12.

Article  CAS  PubMed  Google Scholar 

Nazareth RA, Tomaz LS, Ortiz-Costa S, Atella GC, Ribeiro JMC, Francischetti IMB, et al. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb Haemost. 2006;96:7–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Paula VS, Sgourakis NG, Francischetti IMB, Almeida FCL, Monteiro RQ, Valente AP. NMR structure determination of Ixolaris and factor X(a) interaction reveals a noncanonical mechanism of Kunitz inhibition. Blood. 2019;134:699–708.

Article  PubMed  PubMed Central  Google Scholar 

Dermauw W, Van Leeuwen T, Feyereisen R. Diversity and evolution of the P450 family in arthropods. Insect Biochem Mol Biol. 2020;127: 103490.

Article  CAS  PubMed  Google Scholar 

De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochem Mol Biol. 2023;159: 103981.

Article  PubMed  Google Scholar 

Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006;15:615–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479:487–92.

留言 (0)

沒有登入
gif