Danovaro R, Corinaldesi C, Dell’Anno A, Snelgrove PVR. The deep-sea under global change. Curr Biol. 2017;27(11):R461–5.
Rabone M, Wiethase JH, Simon-Lledó E, Emery AM, Jones DOB, Dahlgren TG, Bribiesca-Contreras G, Wiklund H, Horton T, Glover AG. How many metazoan species live in the world’s largest mineral exploration region? Curr Biol. 2023;33(12):2383–96.
Guggolz T, Meißner K, Schwentner M, Dahlgren TG, Wiklund H, Bonifácio P, Brandt A. High diversity and pan-oceanic distribution of deep-sea polychaetes: Prionospio and Aurospio (Annelida: Spionidae) in the Atlantic and Pacific Ocean. Org Divers Evol. 2020;20:171–87.
Walker LM. Polydora and Dipolydora (Polychaeta Spionidae) of estuaries and bays of subtropical eastern Australia: a review and morphometric investigation of their taxonomy and distribution. Lismore: Southern Cross University; 2008.
David AA, Williams JD. Asexual reproduction and anterior regeneration under high and low temperatures in the sponge associate Polydora colonia (Polychaeta: Spionidae). Invertebr Reprod Dev. 2012;56(4):315–24.
Birch GF, O’Donnell MA, McCready S. Complex relationships between shallow muddy benthic assemblages, sediment chemistry and toxicity in estuaries in southern New South Wales, Australia. Mar Pollut Bull. 2018;129(2):573–91.
Graff JR, Blake JA, Wishner KF. A new species of Malacoceros (Polychaeta: Spionidae) from Kick’em Jenny, a hydrothermally active submarine volcano in the Lesser Antilles Arc. J Mar Biol Assoc U K. 2008;88(5):925–30.
Guggolz T, Meißner K, Schwentner M, Brandt A. Diversity and distribution of Laonice species (Annelida: Spionidae) in the tropical North Atlantic and Puerto Rico Trench. Sci Rep. 2019;9(1):9260.
Article PubMed PubMed Central Google Scholar
Hourdez S, Desbruyères D, Laubier L, Gardiner SL. Malacoceros samurai, a new species of Spionidae (Annelida: Polychaeta) from hydrothermal vent chimney walls on the south East Pacific Rise. Proc Biol Soc Wash. 2006;119(4):592–9.
Bellan G, Dauvin JC, Laubier L. The genus Lindaspio (Annelida: Polychaeta: Spionidae), and a new species from an oil field off Congo, western Africa. J Nat Hist. 2003;37(20):2413–24.
Blake JA, Maciolek NJ. Polychaeta from deep-sea hydrothermal vents in the Eastern Pacific. III: a new genus and two new species of Spionidae from the Guaymas Basin and Juan de Fuca ridge with comments on a related species from the western North Atlantic. Proc Biol Soc Wash. 1992;105(4):723–32.
Sumida PY, Alfaro-Lucas JM, Shimabukuro M, Kitazato H, Perez JA, Soares-Gomes A, Toyofuku T, Lima AO, Ara K, Fujiwara Y. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean. Sci Rep. 2016;6:22139.
Article PubMed PubMed Central Google Scholar
Liang Q, Liu X, Wang J, Chen T, Han Y, Zhang L, Li S, Zhao J, Dong Y, Guo B. Microbial succession, community assembly and adaptation over five years in a newly discovered deep-sea cold seep. bioRxiv. 2024.10.31.619006. https://doi.org/10.1101/2024.10.31.619006.
Yan Y, Wang M, Wu X, Wang H, Zhong Z, Li C. Mitochondrial and morphological adaptions of Lindaspio polybranchiata (Annelida: Spionidae) in the South China Sea. Mar Ecol Prog Ser. 2024;730:43–58.
Sui J, Dong D, Wu X, Li X. A new species of the genus Lindaspio Blake & Maciolek, 1992 (Annelida, Spionidae) from a cold seep near Hainan Island, China. Zookeys. 2023;1153:105–12.
Article PubMed PubMed Central Google Scholar
Gonzalez BC, Martínez A, Worsaae K, Osborn KJ. Morphological convergence and adaptation in cave and pelagic scale worms (Polynoidae, Annelida). Sci Rep. 2021;11(1):10718.
Article PubMed PubMed Central Google Scholar
Jeffery WR. Cavefish as a model system in evolutionary developmental biology. Dev Biol. 2001;231(1):1–12.
Soares D, Niemiller ML. Sensory adaptations of fishes to subterranean environments. Biosci. 2013;63(4):274–83.
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics. 2023;24(1):679.
Article PubMed PubMed Central Google Scholar
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science. 2019;364(6440):588–92.
Article PubMed PubMed Central Google Scholar
Zakas C, Harry ND, Scholl EH, Rockman MV, Lavrov D. The genome of the poecilogonous annelid Streblospio benedicti. Genome Biol Evol. 2022;14(2):evac008.
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Xiang J, et al. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol. 2022;20(1):113.
Article PubMed PubMed Central Google Scholar
Guo Y, Meng L, Wang M, Zhong Z, Li D, Zhang Y, Li H, Zhang H, Seim I, Li Y, et al. Hologenome analysis reveals independent evolution to chemosymbiosis by deep-sea bivalves. BMC Biol. 2023;21(1):51.
Article PubMed PubMed Central Google Scholar
Zeng X, Zhang Y, Meng L, Fan G, Bai J, Chen J, Song Y, Seim I, Wang C, Shao Z, et al. Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. Gigascience. 2020;9(12):giaa139.
Article PubMed PubMed Central Google Scholar
Ritchie H, Jamieson AJ, Piertney SB. Genome size variation in deep-sea amphipods. R Soc Open Sci. 2017;4(9):170862.
Article PubMed PubMed Central Google Scholar
Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene. 2012;509(1):7–15.
Martín-Zamora FM, Liang Y, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature. 2023;615(7950):105–10.
Article PubMed PubMed Central Google Scholar
Sun Y, Sun J, Yang Y, Lan Y, Ip JC, Wong WC, Kwan YH, Zhang Y, Han Z, Qiu JW, et al. Genomic signatures supporting the symbiosis and formation of chitinous tube in the deep-sea tubeworm Paraescarpia echinospica. Mol Biol Evol. 2021;38(10):4116–34.
Article PubMed PubMed Central Google Scholar
Dattagupta S, Miles LL, Barnabei MS, Fisher CR. The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol. 2006;209(Pt 19):3795–805.
Martín-Durán JM, Vellutini BC, Marlétaz F, Cetrangolo V, Cvetesic N, Thiel D, Henriet S, Grau-Bové X, Carrillo-Baltodano AM, Gu W. Conservative route to genome compaction in a miniature annelid. Nat Ecol Evol. 2021;5(2):231–42.
Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo D-H, Larsson T, Lv J, Arendt D. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526–31.
Shao Y, Wang X-B, Zhang J-J, Li M-L, Wu S-S, Ma X-Y, Wang X, Zhao H-F, Li Y, Zhu HH. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat Commun. 2020;11(1):1–15.
Uchida T, Yoshioka Y, Yoshida Y, Fujie M, Yamaki A, Sasaki A, Inoue K, Shinzato C. Genomic and transcriptomic analyses illuminate the molecular basis of the unique lifestyle of a tubeworm, Lamellibrachia satsuma. DNA Res. 2023;30(4):dsad014.
Article PubMed PubMed Central Google Scholar
He X, Wang H, Xu T, Zhang Y, Chen C, Sun Y, Qiu JW, Zhou Y, Sun J. Genomic analysis of a scale worm provides insights into its adaptation to deep-sea hydrothermal vents. Genome Biol Evol. 2023;15(7):evad125.
Article PubMed PubMed Central Google Scholar
Adkins P, Mrowicki R, Harley J, Lab MBAGA, of Life WSIT, Consortium DToL. The genome sequence of a scale worm, Harmothoe impar (Johnston, 1839). Wellcome Open Res. 2023;8:315.
Article PubMed PubMed Central Google Scholar
Weigert A, Bleidorn C. Current status of annelid phylogeny. Org Divers Evol. 2016;16(2):345–62.
留言 (0)