Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation

Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786.

Article  PubMed  PubMed Central  Google Scholar 

Radwan E, Bakr MH, Taha S, Sayed SA, Farrag AA, Ali M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Mol Cell Cardiol. 2020;143:15–25.

Article  PubMed  Google Scholar 

El-Sayed SS, Rezq S, Alsemeh AE, Mahmoud MF. Moxonidine ameliorates cardiac injury in rats with metabolic syndrome by regulating autophagy. Life Sci. 2023;312:121210.

Article  PubMed  Google Scholar 

Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, et al. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system. Cell Death Dis. 2020;11(2):87.

Article  PubMed  PubMed Central  Google Scholar 

Kurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim et Biophys Acta (BBA)-Molecular Cell Res. 2014;1843(11):2543–55.

Article  Google Scholar 

Liu H, Liu P, Shi X, Yin D, Zhao J. NR4A2 protects cardiomyocytes against myocardial infarction injury by promoting autophagy. Cell Death Discovery. 2018;4(1):27.

Article  PubMed  PubMed Central  Google Scholar 

Zarei M, Shrestha R, Johnson S, Yu Z, Karki K, Vaziri-Gohar A, et al. Nuclear receptor 4A2 (NR4A2/NURR1) regulates autophagy and chemoresistance in pancreatic ductal adenocarcinoma. Cancer Res Commun. 2021;1(2):65–78.

Article  PubMed  PubMed Central  Google Scholar 

Ashraf S, Taegtmeyer H, Harmancey R. Prolonged cardiac NR4A2 activation causes dilated cardiomyopathy in mice. Basic Res Cardiol. 2022;117(1):33.

Article  PubMed  PubMed Central  Google Scholar 

Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, et al. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS Lett. 1998;438(3):220–4.

Article  PubMed  Google Scholar 

Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, et al. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci. 2021;269:119008.

Article  PubMed  Google Scholar 

Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother. 2019;112:108612.

Article  PubMed  Google Scholar 

Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary luteolin: a narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. J Agric Food Chem. 2021;69(5):1441–54.

Article  PubMed  Google Scholar 

Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evidence-based complementary and alternative medicine. 2011;2011.

Zhang Y, Tian X-Q, Song X-X, Ge J-P, Xu Y-C. Luteolin protect against diabetic cardiomyopathy in rat model via regulating the AKT/GSK-3β signalling pathway. Biomed Res. 2017;28(3):1359–63.

Google Scholar 

Dong M, Luo Y, Lan Y, He Q, Xu L, Pei Z. Luteolin reduces cardiac damage caused by hyperlipidemia in Sprague-Dawley rats. Heliyon. 2023;9(6).

Kwon E-Y, Kim SY, Choi M-S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients. 2018;10(8):979.

Article  PubMed  PubMed Central  Google Scholar 

Xiao C, Xia M-L, Wang J, Zhou X-R, Lou Y-Y, Tang L-H et al. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function. Oxidative medicine and cellular longevity. 2019;2019.

Hashemzaei M, Abdollahzadeh M, Iranshahi M, Golmakani E, Rezaee R, Tabrizian K. Effects of luteolin and luteolin-morphine co-administration on acute and chronic pain and sciatic nerve ligated-induced neuropathy in mice. J Complement Integr Med. 2017;14(1):20160066.

Article  Google Scholar 

Bogdan S, Luca V, Ober C, Melega I, Pestean C, Codea R, et al. Comparison among different methods for blood pressure monitoring in rats: literature review. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca Veterinary Medicine. 2019;76:1.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25(4):402–8.

Article  PubMed  Google Scholar 

Ali M, Mali V, Haddox S, AbdelGhany SM, El-Deek SE, Abulfadl A, et al. Essential role of IL-12 in angiogenesis in type 2 diabetes. Am J Pathol. 2017;187(11):2590–601.

Article  PubMed  PubMed Central  Google Scholar 

Fornari Laurindo L, Minniti G, José Tofano R, Quesada K, Federighi Baisi Chagas E, Maria Barbalho S. Detection of metabolic syndrome using insulin resistance indexes: a cross-sectional Observational Cohort Study. Endocrines. 2023;4(2):257–68.

Article  Google Scholar 

Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circul Res. 2020;126(6):789–806.

Article  Google Scholar 

Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, et al. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother. 2020;132:110915.

Article  PubMed  Google Scholar 

Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, et al. Garlic derived diallyl trisulfide in experimental metabolic syndrome: metabolic effects and cardioprotective role. Int J Mol Sci. 2020;21(23):9100.

Article  PubMed  PubMed Central  Google Scholar 

Litwin M, Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol. 2021;36:825–37.

Article  PubMed  Google Scholar 

Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: going beyond traditional risk factors. Diab/Metab Res Rev. 2022;38(3):e3502.

Article  Google Scholar 

Acosta G, Amro A, Aguilar R, Abusnina W, Bhardwaj N, Koromia GA et al. Clinical determinants of myocardial injury, detectable and serial troponin levels among patients with hypertensive crisis. Cureus. 2020;12(1).

Parsanathan R, Jain SK. Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metab Syndr Relat Disord. 2020;18(1):10–30.

Article  PubMed  PubMed Central  Google Scholar 

Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother. 2017;86:570–82.

Article  PubMed  Google Scholar 

Becirovic-Agic M, Chalise U, Daseke MJ, Konfrst S, Salomon JD, Mishra PK, et al. Infarct in the heart: what’s MMP-9 got to do with it? Biomolecules. 2021;11(4):491.

Article  PubMed  PubMed Central  Google Scholar 

Luchian I, Goriuc A, Sandu D, Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 2022;23(3):1806.

Article  PubMed  PubMed Central  Google Scholar 

Han M, Zhou B. Role of cardiac fibroblasts in cardiac injury and repair. Curr Cardiol Rep. 2022;24(3):295–304.

Article  PubMed  Google Scholar 

Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Reviews Cardiol. 2022;19(7):435–55.

Article  Google Scholar 

Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med. 2021;8:220.

Article  Google Scholar 

Maneesai P, Bunbupha S, Potue P, Berkban T, Kukongviriyapan U, Kukongviriyapan V et al. Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-p1 and MMPs protein expression. Nutrients. 2018;10(10):1549.

Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino wistar rats. Front Pharmacol. 2020;11:585163.

Article  PubMed  PubMed Central  Google Scholar 

Arinno A, Apaijai N, Chattipakorn SC, Chattipakorn N. The roles of resveratrol on cardiac mitochondrial function in cardiac diseases. Eur J Nutr. 2021;60:29–44.

Article  PubMed  Google Scholar 

Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci. 2022;296:120424.

Article  PubMed  Google Scholar 

Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, Bouzas C, Mateos D, Pons A, et al. Metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants. 2020;9(3):236.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif