Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786.
Article PubMed PubMed Central Google Scholar
Radwan E, Bakr MH, Taha S, Sayed SA, Farrag AA, Ali M. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J Mol Cell Cardiol. 2020;143:15–25.
El-Sayed SS, Rezq S, Alsemeh AE, Mahmoud MF. Moxonidine ameliorates cardiac injury in rats with metabolic syndrome by regulating autophagy. Life Sci. 2023;312:121210.
Menikdiwela KR, Ramalingam L, Rasha F, Wang S, Dufour JM, Kalupahana NS, et al. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system. Cell Death Dis. 2020;11(2):87.
Article PubMed PubMed Central Google Scholar
Kurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim et Biophys Acta (BBA)-Molecular Cell Res. 2014;1843(11):2543–55.
Liu H, Liu P, Shi X, Yin D, Zhao J. NR4A2 protects cardiomyocytes against myocardial infarction injury by promoting autophagy. Cell Death Discovery. 2018;4(1):27.
Article PubMed PubMed Central Google Scholar
Zarei M, Shrestha R, Johnson S, Yu Z, Karki K, Vaziri-Gohar A, et al. Nuclear receptor 4A2 (NR4A2/NURR1) regulates autophagy and chemoresistance in pancreatic ductal adenocarcinoma. Cancer Res Commun. 2021;1(2):65–78.
Article PubMed PubMed Central Google Scholar
Ashraf S, Taegtmeyer H, Harmancey R. Prolonged cardiac NR4A2 activation causes dilated cardiomyopathy in mice. Basic Res Cardiol. 2022;117(1):33.
Article PubMed PubMed Central Google Scholar
Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, et al. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS Lett. 1998;438(3):220–4.
Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, et al. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci. 2021;269:119008.
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother. 2019;112:108612.
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary luteolin: a narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism. J Agric Food Chem. 2021;69(5):1441–54.
Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evidence-based complementary and alternative medicine. 2011;2011.
Zhang Y, Tian X-Q, Song X-X, Ge J-P, Xu Y-C. Luteolin protect against diabetic cardiomyopathy in rat model via regulating the AKT/GSK-3β signalling pathway. Biomed Res. 2017;28(3):1359–63.
Dong M, Luo Y, Lan Y, He Q, Xu L, Pei Z. Luteolin reduces cardiac damage caused by hyperlipidemia in Sprague-Dawley rats. Heliyon. 2023;9(6).
Kwon E-Y, Kim SY, Choi M-S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients. 2018;10(8):979.
Article PubMed PubMed Central Google Scholar
Xiao C, Xia M-L, Wang J, Zhou X-R, Lou Y-Y, Tang L-H et al. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function. Oxidative medicine and cellular longevity. 2019;2019.
Hashemzaei M, Abdollahzadeh M, Iranshahi M, Golmakani E, Rezaee R, Tabrizian K. Effects of luteolin and luteolin-morphine co-administration on acute and chronic pain and sciatic nerve ligated-induced neuropathy in mice. J Complement Integr Med. 2017;14(1):20160066.
Bogdan S, Luca V, Ober C, Melega I, Pestean C, Codea R, et al. Comparison among different methods for blood pressure monitoring in rats: literature review. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca Veterinary Medicine. 2019;76:1.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25(4):402–8.
Ali M, Mali V, Haddox S, AbdelGhany SM, El-Deek SE, Abulfadl A, et al. Essential role of IL-12 in angiogenesis in type 2 diabetes. Am J Pathol. 2017;187(11):2590–601.
Article PubMed PubMed Central Google Scholar
Fornari Laurindo L, Minniti G, José Tofano R, Quesada K, Federighi Baisi Chagas E, Maria Barbalho S. Detection of metabolic syndrome using insulin resistance indexes: a cross-sectional Observational Cohort Study. Endocrines. 2023;4(2):257–68.
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circul Res. 2020;126(6):789–806.
Fan W, Huang Y, Zheng H, Li S, Li Z, Yuan L, et al. Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother. 2020;132:110915.
Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, et al. Garlic derived diallyl trisulfide in experimental metabolic syndrome: metabolic effects and cardioprotective role. Int J Mol Sci. 2020;21(23):9100.
Article PubMed PubMed Central Google Scholar
Litwin M, Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol. 2021;36:825–37.
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: going beyond traditional risk factors. Diab/Metab Res Rev. 2022;38(3):e3502.
Acosta G, Amro A, Aguilar R, Abusnina W, Bhardwaj N, Koromia GA et al. Clinical determinants of myocardial injury, detectable and serial troponin levels among patients with hypertensive crisis. Cureus. 2020;12(1).
Parsanathan R, Jain SK. Novel invasive and noninvasive cardiac-specific biomarkers in obesity and cardiovascular diseases. Metab Syndr Relat Disord. 2020;18(1):10–30.
Article PubMed PubMed Central Google Scholar
Roslan J, Giribabu N, Karim K, Salleh N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother. 2017;86:570–82.
Becirovic-Agic M, Chalise U, Daseke MJ, Konfrst S, Salomon JD, Mishra PK, et al. Infarct in the heart: what’s MMP-9 got to do with it? Biomolecules. 2021;11(4):491.
Article PubMed PubMed Central Google Scholar
Luchian I, Goriuc A, Sandu D, Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 2022;23(3):1806.
Article PubMed PubMed Central Google Scholar
Han M, Zhou B. Role of cardiac fibroblasts in cardiac injury and repair. Curr Cardiol Rep. 2022;24(3):295–304.
Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Reviews Cardiol. 2022;19(7):435–55.
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med. 2021;8:220.
Maneesai P, Bunbupha S, Potue P, Berkban T, Kukongviriyapan U, Kukongviriyapan V et al. Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-p1 and MMPs protein expression. Nutrients. 2018;10(10):1549.
Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino wistar rats. Front Pharmacol. 2020;11:585163.
Article PubMed PubMed Central Google Scholar
Arinno A, Apaijai N, Chattipakorn SC, Chattipakorn N. The roles of resveratrol on cardiac mitochondrial function in cardiac diseases. Eur J Nutr. 2021;60:29–44.
Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci. 2022;296:120424.
Monserrat-Mesquida M, Quetglas-Llabrés M, Capó X, Bouzas C, Mateos D, Pons A, et al. Metabolic syndrome is associated with oxidative stress and proinflammatory state. Antioxidants. 2020;9(3):236.
留言 (0)