JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7

Cai Z, Gong Z, Li Z, Li L, Kong W. Vascular extracellular matrix remodeling and hypertension. Antioxid Redox Signal. 2021;34:765–83.

Article  CAS  PubMed  Google Scholar 

Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, et al. Nidogen-2 maintains the contractile phenotype of vascular smooth muscle cells and prevents neointima formation via bridging jagged1-Notch3 signaling. Circulation. 2021;144:1244–61.

Article  CAS  PubMed  Google Scholar 

Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431.

Article  PubMed  Google Scholar 

Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38:581–7.

Article  CAS  PubMed  Google Scholar 

Fei J, Cui XB, Wang JN, Dong K, Chen SY. ADAR1-mediated RNA editing, A novel mechanism controlling phenotypic modulation of vascular smooth muscle cells. Circ Res. 2016;119:463–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukuda N. Molecular mechanisms of the exaggerated growth of vascular smooth muscle cells in hypertension. J Atheroscler Thromb. 1997;4:65–72.

Article  CAS  PubMed  Google Scholar 

Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10:319–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergink S, Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 2009;458:461–7.

Article  CAS  PubMed  Google Scholar 

Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov. 2018;17:57–78.

Article  CAS  PubMed  Google Scholar 

Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, et al. Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun. 2022;13:2736.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

Article  CAS  PubMed  Google Scholar 

Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18:579–86.

Article  CAS  PubMed  Google Scholar 

Chan WC, Liu X, Magin RS, Girardi NM, Ficarro SB, Hu W, et al. Accelerating inhibitor discovery for deubiquitinating enzymes. Nat Commun. 2023;14:686.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

Article  CAS  PubMed  Google Scholar 

Cai C, Tang YD, Zhai J, Zheng C. The RING finger protein family in health and disease. Signal Transduct Target Ther. 2022;7:300.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng C, Zhao C, Ge F, Li Y, Cao J, Ying M, et al. Machado-Joseph deubiquitinases: from cellular functions to potential therapy targets. Front Pharmacol. 2020;11:1311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grasty KC, Weeks SD, Loll PJ. Structural insights into the activity and regulation of human Josephin-2. J Struct Biol X. 2019;3:100011.

CAS  PubMed  PubMed Central  Google Scholar 

Qian M, Yan F, Wang W, Du J, Yuan T, Wu R, et al. Deubiquitinase JOSD2 stabilizes YAP/TAZ to promote cholangiocarcinoma progression. Acta Pharm Sin B. 2021;11:4008–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krassikova L, Zhang B, Nagarajan D, Queiroz AL, Kacal M, Samakidis E, et al. The deubiquitinase JOSD2 is a positive regulator of glucose metabolism. Cell Death Differ. 2021;28:1091–109.

Article  CAS  PubMed  Google Scholar 

Han J, Fang Z, Han B, Ye B, Lin W, Jiang Y, et al. Deubiquitinase JOSD2 improves calcium handling and attenuates cardiac hypertrophy and dysfunction by stabilizing SERCA2a in cardiomyocytes. Nat Cardiovasc Res. 2023;2:764–77.

Article  CAS  PubMed  Google Scholar 

Guo J, Wang Z, Wu J, Liu M, Li M, Sun Y, et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circ Res. 2019;124:1448–61.

Article  CAS  PubMed  Google Scholar 

Chi J, Meng L, Pan S, Lin H, Zhai X, Liu L, et al. Primary culture of rat aortic vascular smooth muscle cells: a new method. Med Sci Monit. 2017;23:4014–20.

Article  PubMed  PubMed Central  Google Scholar 

Lu QB, Wan MY, Wang PY, Zhang CX, Xu DY, Liao X, et al. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFkappaB/mTOR/P70S6K signaling cascade. Redox Biol. 2018;14:656–68.

Article  CAS  PubMed  Google Scholar 

de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol. 2020;55:691–715.

Article  PubMed  Google Scholar 

Yan W, Cao M, Ruan X, Jiang L, Lee S, Lemanek A, et al. Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nat Cell Biol. 2022;24:793–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiho-Soma A, Akizuki Y, Igarashi K, Endo A, Shoda T, Kawase Y, et al. TRIP12 promotes small-molecule-induced degradation through K29/K48-branched ubiquitin chains. Mol Cell. 2021;81:1411–24.e7.

Article  CAS  PubMed  Google Scholar 

Thenappan T, Ormiston M, Ryan J, Archer S. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492.

Article  PubMed  PubMed Central  Google Scholar 

Chen R, McVey DG, Shen D, Huang X, Ye S. Phenotypic switching of vascular smooth muscle cells in atherosclerosis. J Am Heart Assoc. 2023;12:e031121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Rice M, Swist S, Kubin T, Wu F, Wang S, et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state. Circulation. 2021;143:1394–410.

Article  CAS  PubMed  Google Scholar 

Maguire EM, Xiao Q, Xu Q. Differentiation and application of induced pluripotent stem cell-derived vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2017;37:2026–37.

Article  CAS  PubMed  Google Scholar 

Zhang TT, Lei QQ, He J, Guan X, Zhang X, Huang Y, et al. Bestrophin3 deficiency in vascular smooth muscle cells activates MEKK2/3-MAPK signaling to trigger spontaneous aortic dissection. Circulation. 2023;148:589–606.

留言 (0)

沒有登入
gif