Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992;68:561–72. https://doi.org/10.1016/0092-8674(92)90191-e
Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992;20:2603 https://doi.org/10.1093/nar/20.10.2603
Article PubMed PubMed Central Google Scholar
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73. https://doi.org/10.1038/nature09504
Article PubMed PubMed Central Google Scholar
Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31. https://doi.org/10.1016/j.cell.2012.02.013
Article PubMed PubMed Central Google Scholar
Zaware N, Zhou MM. Bromodomain biology and drug discovery. Nat Struct Mol Biol. 2019;26:870–9. https://doi.org/10.1038/s41594-019-0309-8
Article PubMed PubMed Central Google Scholar
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40. https://doi.org/10.1126/science.1175371
Galdeano C, Ciulli A. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Med Chem. 2016;8:1655–80. https://doi.org/10.4155/fmc-2016-0059
Boi M, Gaudio E, Bonetti P, Kwee I, Bernasconi E, Tarantelli C, et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin Cancer Res. 2015;21:1628–38. https://doi.org/10.1158/1078-0432.Ccr-14-1561
Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 2020;578:306–10. https://doi.org/10.1038/s41586-020-1930-8
Seal J, Lamotte Y, Donche F, Bouillot A, Mirguet O, Gellibert F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett. 2012;22:2968–72. https://doi.org/10.1016/j.bmcl.2012.02.041
Park SG, Lee D, Seo HR, Lee SA, Kwon J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci Rep. 2020;10:16330 https://doi.org/10.1038/s41598-020-73500-7
Article PubMed PubMed Central Google Scholar
Crawford TD, Audia JE, Bellon S, Burdick DJ, Bommi-Reddy A, Côté A, et al. GNE-886: A potent and selective inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2). ACS Med Chem Lett. 2017;8:737–41. https://doi.org/10.1021/acsmedchemlett.7b00132
Article PubMed PubMed Central Google Scholar
Drouin L, McGrath S, Vidler LR, Chaikuad A, Monteiro O, Tallant C, et al. Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J Med Chem. 2015;58:2553–9. https://doi.org/10.1021/jm501963e
Article PubMed PubMed Central Google Scholar
Wu Q, Heidenreich D, Zhou S, Ackloo S, Krämer A, Nakka K, et al. A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat Commun. 2019;10:1915 https://doi.org/10.1038/s41467-019-09672-2
Article PubMed PubMed Central Google Scholar
Footz TK, Brinkman-Mills P, Banting GS, Maier SA, Riazi MA, Bridgland L, et al. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res. 2001;11:1053–70. https://doi.org/10.1101/gr.154901
Article PubMed PubMed Central Google Scholar
Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet. 2005;14:513–24. https://doi.org/10.1093/hmg/ddi048
Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, et al. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med. 2022;14:eabf5473 https://doi.org/10.1126/scitranslmed.abf5473
Article PubMed PubMed Central Google Scholar
Kaynak BT, Zhang S, Bahar I, Doruker P, Cowen L. ClustENMD: efficient sampling of biomolecular conformational space at atomic resolution. Bioinformatics. 2021;37:3956–8. https://doi.org/10.1093/bioinformatics/btab496
Article PubMed PubMed Central Google Scholar
Bahar I, Lezon TR, Yang LW, Eyal E. Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys. 2010;39:23–42. https://doi.org/10.1146/annurev.biophys.093008.131258
Article PubMed PubMed Central Google Scholar
Bakan A, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci USA. 2009;106:14349–54. https://doi.org/10.1073/pnas.0904214106
Article PubMed PubMed Central Google Scholar
Tama F, Sanejouand YH. Conformational change of proteins arising from normal mode calculations. Protein Eng Des Selection. 2001;14:1–6. https://doi.org/10.1093/protein/14.1.1
Bottaro S, Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect match? Science. 2018;361:355–60. https://doi.org/10.1126/science.aat4010
Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: A computational microscope for molecular biology. Annu Rev Biophys. 2012;41:429–52. https://doi.org/10.1146/annurev-biophys-042910-155245
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics. Int J Mol Sci. 2018:19. https://doi.org/10.3390/ijms19113401
Zhang S, Li H, Krieger JM, Bahar I, Ozkan B. Shared signature dynamics tempered by local fluctuations enables fold adaptability and specificity. Mol Biol Evolution. 2019;36:2053–68. https://doi.org/10.1093/molbev/msz102
Mikulska-Ruminska K, Shrivastava I, Krieger J, Zhang S, Li H, Bayır H, et al. Characterization of differential dynamics, specificity, and allostery of lipoxygenase family members. J Chem Inf Model. 2019;59:2496–508. https://doi.org/10.1021/acs.jcim.9b00006
Article PubMed PubMed Central Google Scholar
Ponzoni L, Zhang S, Cheng MH, Bahar I. Shared dynamics of LeuT superfamily members and allosteric differentiation by structural irregularities and multimerization. Philos Trans R Soc B Biological Sci. 2018:373. https://doi.org/10.1098/rstb.2017.0177
Kammer LM, Lipp B, Opatz T. Photoredox alkenylation of carboxylic acids and peptides: synthesis of covalent enzyme inhibitors. J Org Chem. 2019;84:2379–92. https://doi.org/10.1021/acs.joc.8b02759
Shen Y, Zificsak CA, Shea JE, Lao X, Bollt O, Li X, et al. Design,synthesis,and biological evaluation of sulfonyl acrylonitriles as novel inhibitors of cancer metastasis and spread. J Med Chem. 2015;58:1140–58. https://doi.org/10.1021/jm501437v
Zificsak CA, Shen Y, Lisko JG, Theroff JP, Lao X, Bollt O, et al. Synthesis and biological evaluation of sulfonyl acrylonitriles as novel inhibitors to peritoneal carcinomatosis. Bioorg Medicinal Chem Lett. 2012;22:1850–3. https://doi.org/10.1016/j.bmcl.2012.01.085
Li H, Chang YY, Yang LW, Bahar I. iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Res. 2016;44:D415–D422. https://doi.org/10.1093/nar/gkv1236
留言 (0)