AI-driven evolution of precision population cardiovascular health in cities

World Heart Federation. World Heart Report 2023: Confronting the World’s Number One Killer (World Heart Federation, 2023).

Tanner, D. et al. Machine learning to evaluate the relationships between social determinants and diabetes prevalence in New York City. BMJ Public Health 2, e001394 (2024).

Article  Google Scholar 

Zhang, J. et al. Artificial intelligence applied in cardiovascular disease: a bibliometric and visual analysis. Front. Cardiovasc. Med. 11, 1323918 (2024).

Article  PubMed Central  Google Scholar 

Hood, C. M., Gennuso, K. P., Swain, G. R. & Catlin, B. B. County health rankings: relationships between determinant factors and health outcomes. Am. J. Prev. Med. 50, 129–135 (2016).

Article  Google Scholar 

Cai, Y. et al. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Med. 22, 56 (2024).

Article  PubMed Central  Google Scholar 

Reiker, T. et al. Population health impact and economic evaluation of the CARDIO4Cities approach to improve urban hypertension management. PLoS Glob. Public Health 3, e0001480 (2023).

Article  PubMed Central  Google Scholar 

World Heart Federation. City Heartbeat Index 2024 (World Heart Federation, 2024).

World Health Organization. Ethics and governance of artificial intelligence for health: guidance on large multi-modal models. WHO https://iris.who.int/bitstream/handle/10665/375579/9789240084759-eng.pdf?sequence=1 (2024).

留言 (0)

沒有登入
gif