ICAM1 blockade improves ischemic muscle reperfusion in diabetic mice

Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F, on behalf of the American Heart Association Council on Epidemiology and Prevention; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Lifestyle and Cardiometabolic Health; Council on Peripheral Vascular Disease; and Stroke Council. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation [Internet]; 144, (2021). Accessed 24 Jul 2022. https://doi.org/10.1161/CIR.0000000000001005

Lin J, Chen Y, Jiang N, Li Z, Xu S. Burden of peripheral artery disease and its attributable risk factors in 204 countries and territories from 1990 to 2019. Front Cardiovasc Med. 2022;9:868370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, Rudan I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Global Health. 2019;7:e1020–30.

Article  PubMed  Google Scholar 

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton A, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis JR, Catapano AL, Chugh S, Cooper LT, Coresh J, Criqui MH, DeCleene NK, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Sola J, Fowkes FGR, Gakidou E, Grundy SM, He FJ et al. Global Burden of cardiovascular diseases and risk factors. J Am Coll Cardiol. 2020;76:2982–3021.

Article  PubMed  PubMed Central  Google Scholar 

Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K, Edmonds M, Holstein P, Jirkovska A, Mauricio D, Ragnarson Tennvall G, Reike H, Spraul M, Uccioli L, Urbancic V, Van Acker K, van Baal J, van Merode F, Schaper N. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007;50:18–25.

Article  CAS  PubMed  Google Scholar 

Satam K, Aboian E, Huttler J, Zhuo H, Zhang Y, Tonnessen B, Cardella J, Guzman RJ, Ochoa Chaar CI. Eligibility of patients with chronic limb threatening ischemia for deep venous arterialization. Ann Vasc Surg. 2022;86:260–7.

Article  PubMed  Google Scholar 

Abu Dabrh AM, Steffen MW, Undavalli C, Asi N, Wang Z, Elamin MB, Conte MS, Murad MH. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015;62:1642–e16513.

Article  PubMed  Google Scholar 

Nehler MR, Hiatt WR, Taylor LM. Is revascularization and limb salvage always the best treatment for critical limb ischemia? J Vasc Surg. 2003;37:704–8.

Article  PubMed  Google Scholar 

Nehler MR, Duval S, Diao L, Annex BH, Hiatt WR, Rogers K, Zakharyan A, Hirsch AT. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg. 2014;60:686–e6952.

Article  PubMed  Google Scholar 

Couffinhal T, Silver M, Kearney M, Sullivan A, Witzenbichler B, Magner M, Annex B, Peters K, Isner JM. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice. Circulation. 1999;99:3188–98.

Article  CAS  PubMed  Google Scholar 

Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic Hind limb model. J Clin Invest. 1994;93:662–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JJ, Arpino J-M, Yin H, Nong Z, Szpakowski A, Hashi AA, Chevalier J, O’Neil C, Pickering JG. Systematic interrogation of angiogenesis in the ischemic mouse Hind limb: vulnerabilities and Quality Assurance. Arterioscler Thromb Vasc Biol. 2020;40:2454–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isner JM. Therapeutic angiogenesis: a new frontier for vascular therapy. Vasc Med. 1996;1:79–87.

Article  CAS  PubMed  Google Scholar 

Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348:370–4.

Article  CAS  PubMed  Google Scholar 

Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015;116:1561–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peeters Weem SMO, Teraa M, de Borst GJ, Verhaar MC, Moll FL. Bone marrow derived cell therapy in critical limb ischemia: a Meta-analysis of Randomized Placebo controlled trials. Eur J Vasc Endovasc Surg. 2015;50:775–83.

Article  CAS  PubMed  Google Scholar 

Abu Dabrh AM, Steffen MW, Asi N, Undavalli C, Wang Z, Elamin MB, Conte MS, Murad MH. Nonrevascularization-based treatments in patients with severe or critical limb ischemia. J Vasc Surg. 2015;62:1330–e133913.

Article  PubMed  Google Scholar 

Caradu C, Couffinhal T, Chapouly C, Guimbal S, Hollier PL, Ducasse E, Bura-Riviere A, Dubois M, Gadeau AP, Renault MA. Restoring endothelial function by targeting desert hedgehog downstream of Klf2 improves critical limb ischemia in adults. Circul Res. 2018;123:1053–65.

Article  CAS  Google Scholar 

Favier J, Germain S, Emmerich J, Corvol P, Gasc JM. Critical overexpression of thrombospondin 1 in chronic leg ischaemia. J Pathol. 2005;207:358–66.

Article  CAS  PubMed  Google Scholar 

Ho TK, Rajkumar V, Black CM, Abraham DJ, Baker DM. Increased angiogenic response but deficient arteriolization and abnormal microvessel ultrastructure in critical leg ischaemia. Br J Surg. 2006;93:1368–76.

Article  CAS  PubMed  Google Scholar 

McClung JM, McCord TJ, Southerland K, Schmidt CA, Padgett ME, Ryan TE, Kontos CD. Subacute limb ischemia induces skeletal muscle injury in genetically susceptible mice independent of vascular density. J Vasc Surg. 2016;64:1101–e11112.

Article  PubMed  Google Scholar 

Arpino JM, Nong Z, Li F, Yin H, Ghonaim N, Milkovich S, Balint B, O’Neil C, Fraser GM, Goldman D, Ellis CG, Pickering JG. Four-dimensional microvascular analysis reveals that regenerative angiogenesis in ischemic muscle produces a flawed microcirculation. Circ Res. 2017;120:1453–65.

Article  CAS  PubMed  Google Scholar 

Tarvainen S, Wirth G, Juusola G, Hautero O, Kalliokoski K, Sjöros T, Nikulainen V, Taavitsainen J, Hytönen J, Frimodig C, Happonen K, Selander T, Laitinen T, Hakovirta HH, Knuuti J, Laham-Karam N, Hartikainen J, Mäkinen K, Ylä-Herttuala S, Korpisalo P. Critical limb-threatening ischaemia and microvascular transformation: clinical implications. Eur Heart J. 2024;45:255–64.

Article  PubMed  Google Scholar 

Ryan TE, Yamaguchi DJ, Schmidt CA, Zeczycki TN, Shaikh SR, Brophy P, Green TD, Tarpey MD, Karnekar R, Goldberg EJ, Sparagna GC, Torres MJ, Annex BH, Neufer PD, Spangenburg EE, McClung JM. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight. 2018;3:e123235, 123235.

Southerland KW, Xu Y, Peters DT, Lin X, Wei X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells. Genome Med. 2023;15:95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foussard N, Rouault P, Cornuault L, Reynaud A, Buys ES, Chapouly C, Gadeau A-P, Couffinhal T, Mohammedi K, Renault M-A. Praliciguat promotes ischemic leg reperfusion in leptin receptor-deficient mice. Circ Res. 2023;132:34–48.

Article  CAS  PubMed  Google Scholar 

Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667–79.

CAS  PubMed  PubMed Central  Google Scholar 

Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, Zhang H, Strazza M, Rey S, Savino L, Zhou YF, McDonald KR, Na Y, Vandiver S, Rabi A, Shaked Y, Kerbel R, Lavallee T, Semenza GL. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101:1310–8.

Article  CAS  PubMed  Google Scholar 

Nath S, Ghosh SK, Choudhury Y. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods. 2017;84:20–30.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif