Buckley RE, Moran CG, Apivatthakakul T (2017) AO Principles of Fracture Management (Vol v. 1): AO Foundation.
Sudkamp N, Bayer J, Hepp P, Voigt C, Oestern H, Kaab M, Luo C, Plecko M, Wendt K, Kostler W, Konrad G (2009) Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter, observational study. J Bone Joint Surg Am 91(6):1320–1328. https://doi.org/10.2106/JBJS.H.00006
Article CAS PubMed Google Scholar
Panagiotopoulou VC, Varga P, Richards RG, Gueorguiev B, Giannoudis PV (2019) Late screw-related complications in locking plating of proximal humerus fractures: a systematic review. Injury 50(12):2176–2195. https://doi.org/10.1016/j.injury.2019.11.002
Krappinger D, Bizzotto N, Riedmann S, Kammerlander C, Hengg C, Kralinger FS (2011) Predicting failure after surgical fixation of proximal humerus fractures. Injury 42(11):1283–1288. https://doi.org/10.1016/j.injury.2011.01.017
Beeres FJP, Hallensleben NDL, Rhemrev SJ, Goslings JC, Oehme F, Meylaerts SAG, Babst R, Schep NWL (2017) Plate fixation of the proximal humerus: an international multicentre comparative study of postoperative complications. Arch Orthop Trauma Surg 137(12):1685–1692. https://doi.org/10.1007/s00402-017-2790-z
Schnetzke M, Bockmeyer J, Porschke F, Studier-Fischer S, Grützner P-A, Guehring T (2016) Quality of reduction influences outcome after locked-plate fixation of proximal humeral type-C fractures. J Bone Joint Surg Am 98(21):1777–1785. https://doi.org/10.2106/JBJS.16.00112
Solberg BD, Moon CN, Franco DP, Paiement GD (2009) Locked plating of 3- and 4-part proximal humerus fractures in older patients: the effect of initial fracture pattern on outcome. J Orthop Trauma 23(2):113–119. https://doi.org/10.1097/BOT.0b013e31819344bf
Helfen T, Siebenbürger G, Fleischhacker E, Biermann N, Böcker W, Ockert B (2018) Open reduction and internal fixation of displaced proximal humeral fractures. Does the surgeon’s experience have an impact on outcomes? PLoS ONE 13(11):e0207044. https://doi.org/10.1371/journal.pone.0207044
Article CAS PubMed PubMed Central Google Scholar
Vlachopoulos L, Dünner C, Gass T, Graf M, Goksel O, Gerber C, Székely G, Fürnstahl P (2016) Computer algorithms for three-dimensional measurement of humeral anatomy: analysis of 140 paired humeri. J Shoulder Elbow Surg 25(2):e38–e48. https://doi.org/10.1016/j.jse.2015.07.027
Moolenaar JZ, Tümer N, Checa S (2022) Computer-assisted preoperative planning of bone fracture fixation surgery: A state-of-the-art review [Review]. Front Bioeng Biotechnol 10:1037048. https://doi.org/10.3389/fbioe.2022.1037048
Article PubMed PubMed Central Google Scholar
Wu RJ, Zhang W, Lin YZ, Fang ZL, Wang KN, Wang CX, Yu DS (2023) Influence of preoperative simulation on the reduction quality and clinical outcomes of open reduction and internal fixation for complex proximal humerus fractures. BMC Musculoskelet Disord 24(1):243. https://doi.org/10.1186/s12891-023-06348-3
Article PubMed PubMed Central Google Scholar
Vlachopoulos L, Székely G, Gerber C, Fürnstahl P (2018) A scale-space curvature matching algorithm for the reconstruction of complex proximal humeral fractures. Med Image Anal 43:142–156. https://doi.org/10.1016/j.media.2017.10.006
Jiménez-Delgado JJ, Paulano-Godino F, PulidoRam-Ramírez R, Jiménez-Pérez JR (2016) Computer assisted preoperative planning of bone fracture reduction: simulation techniques and new trends. Med Image Anal 30:30–45. https://doi.org/10.1016/j.media.2015.12.005
Vetter SY, Beisemann N, Hogan A, von Recum J, Grützner PA, Franke J (2014) (ii) Computer assisted surgery in trauma and osteotomy. Orthop and Trauma 28(5):286–293. https://doi.org/10.1016/j.mporth.2014.08.001
Weil YA, Liebergall M, Mosheiff R, Helfet DL, Pearle AD (2007) Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comput Aided Surg 12(5):295–302. https://doi.org/10.3109/10929080701657974
Keppler AM, Küssner K, Suero EM, Kronseder V, Böcker W, Kammerlander C, Zeckey C, Neuerburg C (2022) Intraoperative torsion control using the cortical step sign and diameter difference in tibial mid-shaft fractures. Eur J Trauma Emerg Surg 48(5):3659–3667. https://doi.org/10.1007/s00068-020-01566-z
Székely G, Nolte L-P (2016) Image guidance in orthopaedics and traumatology: a historical perspective. Med Image Anal 33:79–83. https://doi.org/10.1016/j.media.2016.06.033
Russo R, Guastafierro A, Pietroluongo LR (2018) A morphovolumetric study of head malposition in proximal humeral fractures based on 3-dimensional computed tomography scans: the control volume theory. J Shoulder Elbow Surg 27(5):940–949. https://doi.org/10.1016/j.jse.2017.12.004
Weil YA, Liebergall M, Mosheiff R, Singer SB, Joskowicz L, Khoury A (2011) Assessment of two 3-D fluoroscopic systems for articular fracture reduction: a cadaver study. Int J Comput Assist Radiol Surg 6(5):685–692. https://doi.org/10.1007/s11548-011-0548-6
Unberath M, Gao C, Hu Y, Judish M, Taylor RH, Armand M, Grupp R (2021) The impact of machine learning on 2D/3D registration for image-guided interventions: a systematic review and perspective. [Systematic review]. Front Robot AI 8:716007. https://doi.org/10.3389/frobt.2021.716007
Article PubMed PubMed Central Google Scholar
Grupp RB, Hegeman RA, Murphy RJ, Alexander CP, Otake Y, McArthur BA, Armand M, Taylor RH (2020) Pose estimation of periacetabular osteotomy fragments with intraoperative X-ray navigation. IEEE Trans Biomed Eng 67(2):441–452. https://doi.org/10.1109/tbme.2019.2915165
Han R, Uneri A, Vijayan RC, Wu P, Vagdargi P, Sheth N, Vogt S, Kleinszig G, Osgood GM, Siewerdsen JH (2021) Fracture reduction planning and guidance in orthopaedic trauma surgery via multi-body image registration. Med Image Anal 68:101917. https://doi.org/10.1016/j.media.2020.101917
Article CAS PubMed Google Scholar
Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99(3):480–517. https://doi.org/10.1037/0033-295x.99.3.480
Article CAS PubMed Google Scholar
Marr D, Nishihara HK (1978) Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B Biol Sci 200(1140):269–294. https://doi.org/10.1098/rspb.1978.0020
Article CAS PubMed Google Scholar
Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147. https://doi.org/10.1037/0033-295x.94.2.115
Ullman S (2007) Object recognition and segmentation by a fragment-based hierarchy. Trends Cogn Sci 11(2):58–64. https://doi.org/10.1016/j.tics.2006.11.009
Brincat SL, Connor CE (2004) Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nat Neurosci 7(8):880–886. https://doi.org/10.1038/nn1278
Article CAS PubMed Google Scholar
Mys K, Visscher L, van Knegsel KP, Gehweiler D, Pastor T, Bashardoust A, Knill AS, Danker C, Dauwe J, Mechkarska R, Raykov G, Karwacki GM, Knobe M, Gueorguiev B, Windolf M, Lambert S, Nijs S, Varga P (2023) Statistical morphology and fragment mapping of complex proximal humeral fractures. Medicina 59(2):370
Article PubMed PubMed Central Google Scholar
Biguri A, Dosanjh M, Hancock S, Soleimani M (2016) TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. Biomed Phys Eng Express 2(5):055010. https://doi.org/10.1088/2057-1976/2/5/055010
Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661. https://doi.org/10.1016/j.media.2010.03.005
留言 (0)