Taylor RH, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom 19:765–781. https://doi.org/10.1109/TRA.2003.817058
Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239:14–21. https://doi.org/10.1097/01.sla.0000103020.19595.7d
Article PubMed PubMed Central Google Scholar
Vitiello V, Lee S-L, Cundy TP, Yang G-Z (2013) Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 6:111–126. https://doi.org/10.1109/RBME.2012.2236311
Diodato A, Brancadoro M, De Rossi G, Abidi H, DallAlba D, Muradore R, Ciuti G, Fiorini P, Menciassi A, Cianchetti M (2018) Soft robotic manipulator for improving dexterity in minimally invasive surgery. Surg Innovation 25(1):69–76
Guthart GS, Salisbury JK (2000) The Intuitive/sup TM/ telesurgery system: overview and application. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol 1. pp 618–621
Yang GZ, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ (2017) Medical robotics? Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robotics 2(4):eaam8638
Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A (2021) A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg 95:106151
Haidegger T, Speidel S, Stoyanov D, Satava RM (2022) Robot-assisted minimally invasive surgery-surgical robotics in the data age. Proc IEEE 110:835–846. https://doi.org/10.1109/JPROC.2022.3180350
Haidegger T (2019) Autonomy for surgical robots: concepts and paradigms. IEEE Trans Med Robotics Bionics 1:65–76. https://doi.org/10.1109/TMRB.2019.2913282
Rumelhart DE, McClelland JL (1987) Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, pp 318–362
Jordan MI (1997) Chapter 25—Serial Order: A Parallel Distributed Processing Approach. In: Donahoe JW, Packard Dorsel V (eds) Advances in Psychology. North-Holland, pp 471–495
van Amsterdam B, Clarkson MJ, Stoyanov D (2020) Multi-Task Recurrent Neural Network for Surgical Gesture Recognition and Progress Prediction. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp 1380–1386
Graves A (2012) Long Short-Term Memory. In: Graves A (ed) Supervised Sequence Labelling with Recurrent Neural Networks. Springer, Berlin, pp 37–45
Lea C, Vidal R, Reiter A, Hager GD (2016) Temporal Convolutional Networks: A Unified Approach to Action Segmentation. In: Hua G, Jegou H (eds) Computer Vision—ECCV 2016 Workshops. Springer International Publishing, Cham, pp 47–54
Qin Y, Pedram SA, Feyzabadi S, Allan M, McLeod A J, Burdick JW, Azizian M (2020) Temporal Segmentation of Surgical Sub-tasks through Deep Learning with Multiple Data Sources. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp 371–377
Qin Y, Feyzabadi S, Allan M, Burdick JW, Azizian M (2020) daVinciNet: Joint Prediction of Motion and Surgical State in Robot-Assisted Surgery. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp 2921–2928
Li Z, Hutchinson K, Alemzadeh H (2022) Runtime detection of executional errors in robot-assisted surgery. In 2022 International conference on robotics and automation (ICRA). IEEE, pp 3850–3856
Shi C, Zheng Y, Fey AM (2022) Recognition and Prediction of Surgical Gestures and Trajectories Using Transformer Models in Robot-Assisted Surgery. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp 8017–8024
Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Bejar B, Yuh DD, Chen CCG, (2014) Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling. In: MICCAI workshop: M2cai (vol 3, no 3)
Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD (2017) A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 64(9):2025–2041
Article PubMed PubMed Central Google Scholar
Kazemnejad A, Padhi I, Ramamurthy KN, Das P, Reddy S (2023) The Impact of Positional Encoding on Length Generalization in Transformers. arXiv preprint arXiv:2305.19466
Goldberg Y, Levy O (2014) word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Proc Syst 30(5998):6008
Ioffe S, Szegedy C (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ArXiv
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
Yasar MS, Alemzadeh H (2020) Real-Time Context-Aware Detection of Unsafe Events in Robot-Assisted Surgery. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). pp 385–397
Yasar MS, Evans D, Alemzadeh H (2019) Context-aware Monitoring in Robotic Surgery. In: 2019 International Symposium on Medical Robotics (ISMR). pp 1–7
Hendricks A, Panoff M, Xiao K, Wang Z, Wang S, Bobda C (2024) Exploring the Limitations and Implications of the JIGSAWS Dataset for Robot-Assisted Surgery. IEEE Robotics and Automation Letters (vol 9, no 11)
Foumani NM, Tan CW, Webb GI, Salehi M (2024) Improving position encoding of transformers for multivariate time series classification. Data Min Knowl Disc 38(1):22–48
留言 (0)