Diagnosing Helicobacter pylori using autoencoders and limited annotations through anomalous staining patterns in IHC whole slide images

Yang J (2014) Treatment of helicobacter pylori infection: current status and future concepts. World J Gastroenterol 20(18):5283–93

Article  CAS  PubMed Central  PubMed  Google Scholar 

Batts KP, Ketover S, Kakar S, Krasinskas AM, Mitchell KA, Wilcox R, Westerhoff M, Rank J, Gibson J, Mattia AR, Cummings OW, Davison JM, Naini JMBV, Dry SM, Yantiss RK (2013) Gastrointestinal pathology society. appropriate use of special stains for identifying helicobacter pylori: recommendations from the rodger c. haggitt gastrointestinal pathology society. Am J Surg Pathol 37(11):12–22

Article  Google Scholar 

Salto-Tellez M, Maxwell P, Hamilton P (2019) Artificial intelligence-the third revolution in pathology. Histopathology 74(3):372–376

Article  PubMed  Google Scholar 

Klein S, Gildenblat J, Ihle MA (2020) al: deep learning for sensitive detection of helicobacter pylori in gastric biopsies. BMC gastroenterology 20(1):1–11

Article  Google Scholar 

Liscia DS, D’Andrea M, Biletta E, Bellis D, Demo K, Ferrero F, Petti A, Butinar R, D’Andrea E, Davini G (2022) Use of digital pathology and artificial intelligence for the diagnosis of helicobacter pylori in gastric biopsies. Pathologica 114(4):295

Article  PubMed Central  PubMed  Google Scholar 

Ibrahim AU, Dirilenoğlu F, Hacisalihoğlu UP, Ilhan A, Mirzaei O (2024) Classification of h. pylori infection from histopathological images using deep learning. J Imaging Inf Med 37:1–10

Google Scholar 

Zhou S, Marklund H, Blaha O, Desai M, Martin B, Bingham D, Berry GJ, Gomulia E, Ng AY, Shen J (2020) Deep learning assistance for the histopathologic diagnosis of helicobacter pylori. Intell -Based Med 1:100004

Google Scholar 

Lin Y-J, Chen C-C, Lee C-H, Yeh C-Y, Jeng Y-M (2023) Two-tiered deep-learning-based model for histologic diagnosis of helicobacter gastritis. Histopathology 83(5):771–781

Article  PubMed  Google Scholar 

Huang S-C, Chen C-C, Lan J, Hsieh T-Y, Chuang H-C, Chien M-Y, Ou T-S, Chen K-H, Wu R-C, Liu Y-J et al (2022) Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nature Commun 13(1):3347

Article  CAS  Google Scholar 

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929

Le-Khac PH, Healy G, Smeaton AF (2020) Contrastive representation learning: a framework and review. IEEE Access 8:193907–193934. https://doi.org/10.1109/ACCESS.2020.3031549

Article  Google Scholar 

Feng Y, Zhang L, Mo J (2020) Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Tran Computational Biol Bioinf 17(1):91–101. https://doi.org/10.1109/TCBB.2018.2858763

Article  Google Scholar 

Yong BX, Brintrup A (2022) Do autoencoders need a bottleneck for anomaly detection? IEEE Access 10:78455–78471

Article  Google Scholar 

Chen RJ, Ding T, Lu MY, Williamson DF, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M et al (2024) Towards a general-purpose foundation model for computational pathology. Nature Med 30(3):850–862

Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143(1):29–36

Obuchowski NA, McCLISH DK (1997) Sample size determination for diagnostic accuracy studies involving binormal roc curve indices. Statistics Med 16(13):1529–1542

Article  CAS  Google Scholar 

Hahne C, Aggoun A (2021) Plenopticam v1.0: a light-field imaging framework. IEEE Tran Image Process 30:6757–6771

Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: III HD, Singh A (eds) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp 1597–1607. PMLR, ???

Wilm F, Fragoso M, Bertram CA, Stathonikos N, Öttl M, Qiu J, Klopfleisch R, Maier AK, Aubreville M, Breininger K (2022) Mind the gap: Scanner-induced domain shifts pose challenges for representation learning in histopathology. ArXiv abs/2211.16141

留言 (0)

沒有登入
gif