Tanino M, Kobayashi M, Sasaki T, Takata K, Takeda Y, Mizobuchi S, et al. Isoflurane induces transient impairment of Retention of spatial Working memory in rats. Acta Med Okayama. 2016;70(6):455–60. https://doi.org/10.18926/amo/54808.
Cao Y, Li Z, Li H, Ni C, Li L, Yang N, et al. Hypoxia-inducible factor-1α is involved in isoflurane-induced blood-brain barrier disruption in aged rats model of POCD. Behav Brain Res. 2018;339:39–46. https://doi.org/10.1016/j.bbr.2017.09.004.
Article CAS PubMed Google Scholar
Li C, Shi J, Sun J, Shi Y, Jia H. Cannabinoid receptor 2 deficiency enhances isoflurane-induced spatial cognitive impairment in adult mice by affecting neuroinflammation, neurogenesis and neuroplasticity. Experimental Therapeutic Med. 2021;22(2):908. https://doi.org/10.3892/etm.2021.10340.
Chong H, Xi Y, Zhou Y, Wang G. Protective effects of chlorogenic acid on isoflurane-induced cognitive impairment of aged mice. Food Sci Nutr. 2022;10(10):3492–500. https://doi.org/10.1002/fsn3.2952.
Article CAS PubMed PubMed Central Google Scholar
Ge X, Zuo Y, Xie J, Li X, Li Y, Thirupathi A, et al. A new mechanism of POCD caused by sevoflurane in mice: cognitive impairment induced by cross-dysfunction of iron and glucose metabolism. Aging. 2021;13(18):22375–89. https://doi.org/10.18632/aging.203544.
Article CAS PubMed PubMed Central Google Scholar
Sonawane D, Pokharkar V. Quercetin-loaded Nanostructured lipid carrier in situ gel for Brain Targeting through Intranasal Route: Formulation, in vivo pharmacokinetic and pharmacodynamic studies. AAPS PharmSciTech. 2024;25(2):30. https://doi.org/10.1208/s12249-024-02736-7.
Article CAS PubMed Google Scholar
Liu Y, Hong H, Xue J, Luo J, Liu Q, Chen X, et al. Near-Infrared Radiation-assisted drug delivery nanoplatform to realize blood-brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS Appl Mater Interfaces. 2021;13(31):37746–60. https://doi.org/10.1021/acsami.1c12675.
Article CAS PubMed Google Scholar
Sun Y, Zhang H, Wu Z, Yu X, Yin Y, Qian S, et al. Quercitrin rapidly alleviated Depression-like behaviors in Lipopolysaccharide-treated mice: the involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF Signaling Restoration in the Hippocampus. ACS Chem Neurosci. 2021;12(18):3387–96. https://doi.org/10.1021/acschemneuro.1c00371.
Article CAS PubMed Google Scholar
Xu C, Niu JJ, Zhou JF, Wei YS. MicroRNA-96 is responsible for sevoflurane-induced cognitive dysfunction in neonatal rats via inhibiting IGF1R. Brain Res Bull. 2019;144:140–8. https://doi.org/10.1016/j.brainresbull.2018.09.001.
Article CAS PubMed Google Scholar
Hou Q, Li S, Zhang B, Chu H, Ni C, Fei X, et al. LncRNA Riken attenuated Sevoflurane-Induced Neuroinflammation by regulating the MicroRNA-101a/MKP-1/JNK pathway. Neurotox Res. 2022;40(1):186–97. https://doi.org/10.1007/s12640-021-00443-w.
Article CAS PubMed Google Scholar
Ye J, Zhang Z, Wang Y, Chen C, Xu X, Yu H, et al. Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling and bioinformatics target analysis. Experimental Therapeutic Med. 2016;12(3):1299–310. https://doi.org/10.3892/etm.2016.3452.
Xun J, Du L, Gao R, Shen L, Wang D, Kang L, et al. Cancer-derived exosomal mir-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics. 2021;11(14):6847–59. https://doi.org/10.7150/thno.51864.
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Huai Y, Chen G, Liu S, Zhang Y, Li D, et al. MiR-138-5p targets MACF1 to aggravate aging-related bone loss. Int J Biol Sci. 2022;18(13):4837–52. https://doi.org/10.7150/ijbs.71411.
Article CAS PubMed PubMed Central Google Scholar
Barreda-Manso MA, Soto A, Muñoz-Galdeano T, Reigada D, Nieto-Díaz M, Maza RM. MiR-138-5p upregulation during neuronal maturation parallels with an increase in neuronal survival. Int J Mol Sci. 2023;24(22). https://doi.org/10.3390/ijms242216509.
Feng F, Zhan Z, Luo D, Hu J, Wei G, Hua F, et al. LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR-138-5p. Brain Behav Immun. 2021;98:283–98. https://doi.org/10.1016/j.bbi.2021.08.230.
Article CAS PubMed Google Scholar
Yang XY, Li QJ, Zhang WC, Zheng SQ, Qu ZJ, Xi Y, et al. AMPK-SIRT1-PGC1α Signal Pathway influences the cognitive function of aged rats in Sevoflurane-Induced Anesthesia. J Mol Neuroscience: MN. 2020;70(12):2058–67. https://doi.org/10.1007/s12031-020-01612-w.
Lian F, Cao C, Deng F, Liu C, Zhou Z. Propofol alleviates postoperative cognitive dysfunction by inhibiting inflammation via up-regulating mir-223-3p in aged rats. Cytokine. 2022;150:155783. https://doi.org/10.1016/j.cyto.2021.155783.
Article CAS PubMed Google Scholar
Shi C, Yi D, Li Z, Zhou Y, Cao Y, Sun Y, et al. Anti-RAGE antibody attenuates isoflurane-induced cognitive dysfunction in aged rats. Behav Brain Res. 2017;322(Pt A):167–76. https://doi.org/10.1016/j.bbr.2017.01.012.
Article CAS PubMed Google Scholar
Chen C, Li XH, Tu Y, Sun HT, Liang HQ, Cheng SX, et al. Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway. Neuroscience. 2014;257:1–10. https://doi.org/10.1016/j.neuroscience.2013.10.056.
Article CAS PubMed Google Scholar
Kong X, Lyu W, Lin X, Lin C, Feng H, Xu L, et al. Itaconate alleviates anesthesia/surgery-induced cognitive impairment by activating a Nrf2-dependent anti-neuroinflammation and neurogenesis via gut-brain axis. J Neuroinflamm. 2024;21(1):104. https://doi.org/10.1186/s12974-024-03103-w.
Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, et al. Bacteriostatic Effect of Quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in Vitro. J Food Prot. 2018;81(1):68–78. https://doi.org/10.4315/0362-028x.Jfp-17-214.
Article CAS PubMed Google Scholar
Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine. 2020;99(38):e22241. https://doi.org/10.1097/md.0000000000022241.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Li H, Wang W, Li H. Assessing the anti-inflammatory effects of quercetin using network pharmacology and in vitro experiments. Experimental Therapeutic Med. 2022;23(4):301. https://doi.org/10.3892/etm.2022.11230.
Liu F, Yang Y, Peng W, Zhao N, Chen J, Xu Z, et al. Mitophagy-promoting mir-138-5p promoter demethylation inhibits pyroptosis in sepsis-associated acute lung injury. Inflamm Research: Official J Eur Histamine Res Soc [et al]. 2023;72(2):329–46. https://doi.org/10.1007/s00011-022-01675-y.
Mao X, Luan D, Qi Z. Dysregulation of serum mir-138-5p and its clinical significance in patients with Acute Cerebral infarction. Cerebrovascular diseases (Basel, Switzerland). 2022;51(5):670–7. https://doi.org/10.1159/000523902
Li H, Tang C, Wang D. LncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis. Biochemistry and cell biology = Biochimie. et Biol Cellulaire. 2020;98(4):525–36. https://doi.org/10.1139/bcb-2019-0281.
Galleggiante V, De Santis S, Liso M, Verna G, Sommella E, Mastronardi M, et al. Quercetin-Induced mir-369-3p suppresses chronic inflammatory response targeting C/EBP-β. Mol Nutr Food Res. 2019;63(19):e1801390. https://doi.org/10.1002/mnfr.201801390.
Article CAS PubMed Google Scholar
Wang H, Jiang W, Hu Y, Wan Z, Bai H, Yang Q, et al. Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting MiR-135b expression. Phytomedicine: Int J Phytotherapy Phytopharmacology. 2021;93:153774. https://doi.org/10.1016/j.phymed.2021.153774.
Saenz-Pipaon G, Jover E, van der Bent ML, Orbe J, Rodriguez JA, Fernández-Celis A, et al. Role of LCN2 in a murine model of hindlimb ischemia and in peripheral artery disease patients, and its potential regulation by miR-138-5P. Atherosclerosis. 2023;385:117343. https://doi.org/10.1016/j.atherosclerosis.2023.117343.
留言 (0)