Immunogenomic determinants of exceptional response to immune checkpoint inhibition in renal cell carcinoma

Kidney and renal pelvis cancer—cancer stat facts. National Cancer Institute Surveillance, Epidemiology and End Results Program https://seer.cancer.gov/statfacts/html/kidrp.html (2022).

Motzer, R. J., Bander, N. H. & Nanus, D. M.Renal-cell carcinoma. N. Engl. J. Med. 335, 865–875 (1996).

Article  CAS  PubMed  Google Scholar 

Albiges, L. et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 5, e001079 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

FDA approves pembrolizumab for adults and children with TMB-H solid tumors. US Food and Drug Administration https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2023).

Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma HHS public access. Science 359, 801–806 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDermott, D. F. et al. Publisher correction: clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 1941 (2018).

Article  CAS  PubMed  Google Scholar 

Bakouny, Z. et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma. Nat. Commun. 12, 1–14 (2021).

Article  Google Scholar 

Braun, D. A. et al. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol. 5, 1631 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rosellini, M. et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 20, 133–157 (2023).

Article  CAS  PubMed  Google Scholar 

Heidegger, I., Pircher, A. & Pichler, R. Targeting the tumor microenvironment in renal cell cancer biology and therapy. Front. Oncol. 9, 490 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Pilard, C. et al. Cancer immunotherapy: it’s time to better predict patients’ response. Br. J. Cancer 125, 927–938 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Saner, F. A. M. et al. Going to extremes: determinants of extraordinary response and survival in patients with cancer. Nat. Rev. Cancer 19, 339–348 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–1674 (2018).

Article  CAS  PubMed  Google Scholar 

Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris, L. G. T. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7, 10051–10063 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

Article  CAS  PubMed  Google Scholar 

Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

Article  PubMed  PubMed Central  Google Scholar 

House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020).

Article  CAS  PubMed  Google Scholar 

Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motzer, R. J. et al. Biomarker analysis from CheckMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J. Immunother. Cancer 10, e004316 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541 (2022).

Article  CAS  PubMed  Google Scholar 

Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

Article  CAS  PubMed  Google Scholar 

Xu, W. et al. Prognostic value, DNA variation and immunologic features of a tertiary lymphoid structure-related chemokine signature in clear cell renal cell carcinoma. Cancer Immunol. Immunother. 71, 1923–1935 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Büttner, F. A. et al. A novel molecular signature identifies mixed subtypes in renal cell carcinoma with poor prognosis and independent response to immunotherapy. Genome Med. 14, 105 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Zou, X. L. et al. Prognostic value of neoantigen load in immune checkpoint inhibitor therapy for cancer. Front. Immunol. 12, 1–9 (2021).

Article  Google Scholar 

Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. Cell 173, 595–610 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif