Matrix Metallopeptidase 9 Promotes Contraction in Human Uterine Myometrium

Chen J, Khalil RA. Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. 2017;148:87–165. https://doi.org/10.1016/bs.pmbts.2017.04.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng J, Huang C, Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. Mol Reprod Dev. 2016;83(4):276–86. https://doi.org/10.1002/mrd.22626.

Article  CAS  PubMed  Google Scholar 

Nikolov A, Popovski N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel). 2021;11(3):480. https://doi.org/10.3390/diagnostics11030480.

Article  CAS  PubMed  Google Scholar 

Stygar D, et al. Increased level of matrix metalloproteinases 2 and 9 in the ripening process of the human cervix. Biol Reprod. 2002;67(3):889–94. https://doi.org/10.1095/biolreprod.102.005116.

Article  CAS  PubMed  Google Scholar 

Nothnick WB. Regulation of uterine matrix metalloproteinase-9 and the role of microRNAs. Semin Reprod Med. 2008;26(6):494–9. https://doi.org/10.1055/s-0028-1096129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Z, et al. Increased MMPs expression and decreased contraction in the rat myometrium during pregnancy and in response to prolonged stretch and sex hormones. Am J Physiol Endocrinol Metab. 2012;303(1):E55-70. https://doi.org/10.1152/ajpendo.00553.2011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ulrich CC, et al. Matrix metalloproteinases 2 and 9 are elevated in human preterm laboring uterine myometrium and exacerbate uterine contractilitydagger. Biol Reprod. 2019;100(6):1597–604. https://doi.org/10.1093/biolre/ioz054.

Article  PubMed  PubMed Central  Google Scholar 

Maymon E, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol. 2000;183(4):887–94. https://doi.org/10.1067/mob.2000.108878.

Article  CAS  PubMed  Google Scholar 

Lombardi A, et al. Expression of matrix metalloproteinases in the mouse uterus and human myometrium during pregnancy, labor, and preterm labor. Reprod Sci. 2018;25(6):938–49. https://doi.org/10.1177/1933719117732158.

Article  CAS  PubMed  Google Scholar 

Di Ferdinando A, et al. Expression of matrix metalloproteinase-9 (MMP-9) in human midpregnancy amniotic fluid and risk of preterm labor. Clin Exp Obstet Gynecol. 2010;37(3):193–6.

PubMed  Google Scholar 

Locksmith GJ, et al. Amniotic fluid concentrations of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 during pregnancy and labor. Am J Obstet Gynecol. 2001;184(2):159–64. https://doi.org/10.1067/mob.2001.108860.

Article  CAS  PubMed  Google Scholar 

Duran-Chavez J, et al. Relationship between metalloproteinase-2 and -9 levels in plasma and vaginal secretion with preterm birth. Eur J Obstet Gynecol Reprod Biol. 2021;261:217–21. https://doi.org/10.1016/j.ejogrb.2021.03.026.

Article  CAS  PubMed  Google Scholar 

Tency I, et al. Imbalances between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in maternal serum during preterm labor. PLoS ONE. 2012;7(11): e49042. https://doi.org/10.1371/journal.pone.0049042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barisic A, et al. Matrix metalloproteinase and tissue inhibitors of metalloproteinases gene polymorphisms in disorders that influence fertility and pregnancy complications: a systematic review and meta-analysis. Gene. 2018;647:48–60. https://doi.org/10.1016/j.gene.2018.01.010.

Article  CAS  PubMed  Google Scholar 

Ferrand PE, et al. A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol Hum Reprod. 2002;8(5):494–501. https://doi.org/10.1093/molehr/8.5.494.

Article  CAS  PubMed  Google Scholar 

Pereza N, et al. Matrix metalloproteinases 1, 2, 3 and 9 functional single-nucleotide polymorphisms in idiopathic recurrent spontaneous abortion. Reprod Biomed Online. 2012;24(5):567–75. https://doi.org/10.1016/j.rbmo.2012.01.008.

Article  CAS  PubMed  Google Scholar 

Arrowsmith S, et al. Contractility measurements of human uterine smooth muscle to aid drug development. J Vis Exp. 2018;(131). https://doi.org/10.3791/56639.

Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904–27. https://doi.org/10.1038/nrd4390.

Article  CAS  PubMed  Google Scholar 

Webb AH, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 2017;17(1):434. https://doi.org/10.1186/s12885-017-3418-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2010;45(5):351–423. https://doi.org/10.3109/10409238.2010.501783.

Article  CAS  PubMed  Google Scholar 

McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13(5):534–40. https://doi.org/10.1016/s0955-0674(00)00248-9.

Article  CAS  PubMed  Google Scholar 

Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162–82. https://doi.org/10.1111/febs.15701.

Article  CAS  PubMed  Google Scholar 

Ku CY, et al. Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11. Endocrinology. 1995;136(4):1509–15. https://doi.org/10.1210/endo.136.4.7895660.

Article  CAS  PubMed  Google Scholar 

Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231–6. https://doi.org/10.1038/372231a0.

Article  CAS  PubMed  Google Scholar 

Monga M, et al. Oxytocin-stimulated responses in a pregnant human immortalized myometrial cell line. Biol Reprod. 1996;55(2):427–32. https://doi.org/10.1095/biolreprod55.2.427.

Article  CAS  PubMed  Google Scholar 

Loftus FC, Richardson MJ, Shmygol A. Single-cell mechanics and calcium signalling in organotypic slices of human myometrium. J Biomech. 2015;48(9):1620–4. https://doi.org/10.1016/j.jbiomech.2015.01.046.

Article  PubMed  PubMed Central  Google Scholar 

Word RA, Tang DC, Kamm KE. Activation properties of myosin light chain kinase during contraction/relaxation cycles of tonic and phasic smooth muscles. J Biol Chem. 1994;269(34):21596–602.

Article  CAS  PubMed  Google Scholar 

Meighan SE, et al. Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating. Biochemistry. 2013;52(46):8352–62. https://doi.org/10.1021/bi400824x.

Article  CAS  PubMed  Google Scholar 

Remacle AG, et al. Matrix Metalloproteinase (MMP) proteolysis of the extracellular loop of voltage-gated sodium channels and potential alterations in pain signaling. J Biol Chem. 2015;290(38):22939–44. https://doi.org/10.1074/jbc.C115.671107.

Article  C

留言 (0)

沒有登入
gif