Reclassifying a Novel POMT1 Variant by Integrating Functional Analysis and Bioinformatics: Implications for Preimplantation Genetic Testing

Feldkamp ML, Carey JC, Byrne JLB, et al. Etiology and clinical presentation of birth defects: Population based study. BMJ (Clinical Res ed). 2017;357(j2249). https://doi.org/10.1136/bmj.j2249

Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11. https://doi.org/10.1056/NEJMoa1306555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jelin AC, Vora N. Whole exome sequencing: applications in prenatal Genetics. Obstet Gynecol Clin N Am. 2018;45(1):69–81. https://doi.org/10.1016/j.ogc.2017.10.003

Article  Google Scholar 

Fu F, Li R, Yu Q, et al. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med. 2022;14(1):123. https://doi.org/10.1186/s13073-022-01130-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet (London England). 2019;393(10173):758–67. https://doi.org/10.1016/s0140-6736-18-32042-7

Article  CAS  PubMed  Google Scholar 

Fesahat F, Montazeri F, Hoseini SM. Preimplantation genetic testing in assisted Reproduction Technology. J Gynecol Obstet Hum Reprod. 2020;49(5):101723. https://doi.org/10.1016/j.jogoh.2020.101723

Article  PubMed  Google Scholar 

De Rycke M, Berckmoes V. Preimplantation genetic testing for monogenic disorders. Genes. 2020;11(8):871. https://doi.org/10.3390/genes11080871

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a Joint Consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. Official J Am Coll Med Genet. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30

Article  Google Scholar 

Rotshenker-Olshinka K, Srebnik Moshe N, Weiss O, et al. Preimplantation genetic testing (PGT) for copy number variants of uncertain significance (CNV - VUS) in the genomic era: to do or not to do?. J Assist Reprod Genet. 2021;38(3):719–25. https://doi.org/10.1007/s10815-020-02055-3

Article  PubMed  PubMed Central  Google Scholar 

Taniguchi-Ikeda M, Morioka I, Iijima K, et al. Mechanistic aspects of the formation of Α-Dystroglycan and therapeutic research for the treatment of Α-Dystroglycanopathy: a review. Mol Aspects Med. 2016;51:115–24. https://doi.org/10.1016/j.mam.2016.07.003

Article  CAS  PubMed  Google Scholar 

Godfrey C, Clement E, Mein R, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007;130(Pt 10):2725–35. https://doi.org/10.1093/brain/awm212

Article  PubMed  Google Scholar 

Godfrey C, Foley AR, Clement E, et al. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011;21(3):278–85. https://doi.org/10.1016/j.gde.2011.02.001

Article  CAS  PubMed  Google Scholar 

Mercuri E, Bönnemann C G, Muntoni F. Muscular dystrophies. Lancet (London, England), 2019, 394(10213): 2025-2038. https://doi.org/10.1016/s0140-6736-19-32910-1

Article  Google Scholar 

Nabhan MM, Elkhateeb N, Braun DA, et al. Cystic kidneys in fetal Walker-Warburg syndrome with Pomt2 mutation: intrafamilial phenotypic variability in four siblings and review of literature. Am J Med Genet Part A. 2017;173(10):2697–702. https://doi.org/10.1002/ajmg.a.38393

Article  CAS  PubMed  Google Scholar 

Brancaccio A. A molecular overview of the primary dystroglycanopathies. J Cell Mol Med. 2019;23(5):3058–62. https://doi.org/10.1111/jcmm.14218

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanagawa M. Dystroglycanopathy: from elucidation of molecular and pathological mechanisms to development of treatment methods. Int J Mol Sci. 2021;22(23):13162. https://doi.org/10.3390/ijms222313162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endo T, Manya H. O-Mannosylation in mammalian cells. Methods Mol Biol. 2006;347:43–56. https://doi.org/10.1385/1-59745-167-3/43

Endo T. Glycobiology of Α-Dystroglycan and muscular dystrophy. J BioChem. 2015;157(1):1–12. https://doi.org/10.1093/jb/mvu066

Article  CAS  PubMed  Google Scholar 

Kleinberger J, Maloney K A, Pollin T I, et al. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genet Med. 2016;18(11):1165. https://doi.org/10.1038/gim.2016.13

Yang H, Manya H, Kobayashi K, et al. Analysis of phenotype, enzyme activity and genotype of Chinese patients with Pomt1 mutation. J Hum Genet. 2016;61(8):753–9. https://doi.org/10.1038/jhg.2016.42

Article  CAS  PubMed  Google Scholar 

Jaganathan K, Kyriazopoulou Panagiotopoulou S, Mcrae JF, et al. Predicting Splicing from primary sequence with deep learning. Cell. 2019;176(3):535–e548524. https://doi.org/10.1016/j.cell.2018.12.015

Article  CAS  PubMed  Google Scholar 

Hu P, Yuan L, Deng H. Molecular genetics of the POMT1-related muscular dystrophy-Dystroglycanopathies. Mutat Res Reviews Mutat Res. 2018;778:45–50. https://doi.org/10.1016/j.mrrev.2018.09.002

Kilby MD. The role of next-generation sequencing in the investigation of Ultrasound-identified fetal structural anomalies. BJOG: Int J Obstet Gynecol. 2021;128(2):420–9. https://doi.org/10.1111/1471-0528.16533

Article  CAS  Google Scholar 

Zhi Y, Liu L, Wang H, et al. Prenatal exome sequencing analysis in fetuses with central nervous system anomalies. Ultrasound Obstet Gynecol. 2023;62(5):721–6. https://doi.org/10.1002/uog.26254

Article  CAS  Google Scholar 

Mellis R, Oprych K, Scotchman E, et al. Diagnostic yield of Exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and Meta-analysis. Prenat Diagn. 2022;42(6):662–85. https://doi.org/10.1002/pd.6115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muntoni F, Torelli S, Brockington M. Muscular dystrophies due to glycosylation defects. Neurotherapeutics: J Am Soc Experimental Neurother. 2008;5(4):627–32. https://doi.org/10.1016/j.nurt.2008.08.005

Article  CAS  Google Scholar 

Mercuri E, Messina S, Bruno C, et al. Congenital muscular dystrophies with defective glycosylation of Dystroglycan: a population study. Neurology. 2009;72(21):1802–9. https://doi.org/10.1212/01.wnl.0000346518.68110.60

Article  CAS  PubMed  Google Scholar 

Sciandra F, Gawlik KI, Brancaccio A, et al. Dystroglycan: a possible mediator for reducing congenital muscular dystrophy?. Trends Biotechnol. 2007;25(6):262–8. https://doi.org/10.1016/j.tibtech.2007.04.002

Article  CAS  PubMed  Google Scholar 

Montanaro F, Carbonetto S. Targeting Dystroglycan in the brain. Neuron. 2003;37(2):193–6. https://doi.org/10.1016/s0896-6273-03-00032-1

Article  CAS  PubMed  Google Scholar 

Kim DS, Hayashi YK, Matsumoto H, et al. POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in Alpha-DG. Neurology. 2004;62(6):1009–11. https://doi.org/10.1212/01.wnl.0000115386.28769.65

Article  CAS  PubMed  Google Scholar 

Sheikh MO, Halmo SM, Wells L. Recent advancements in understanding mammalian O-Mannosylation. Glycobiology. 2017;27(9):806–19. https://doi.org/10.1093/glycob/cwx062

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willer T, Prados B, Falcón-Pérez JM, et al. Targeted disruption of the Walker-Warburg syndrome gene POMT1 in mouse results in embryonic lethality. Proc Natl Acad Sci USA. 2004;101(39):14126–31. https://doi.org/10.1073/pnas.0405899101

Article  CAS 

留言 (0)

沒有登入
gif