Hanno PM, Burks DA, Clemens JQ et al (2011) AUA Guideline for the diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J Urol 185:2162–2170. https://doi.org/10.1016/j.juro.2011.03.064
Article PubMed PubMed Central Google Scholar
Clemens JQ, Erickson DR, Varela NP, Lai HH (2022) Diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J Urol 208:34–42. https://doi.org/10.1097/JU.0000000000002756
Hanno PM, Erickson D, Moldwin R, Faraday MM (2015) Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA Guideline Amendment. J Urol 193:1545–1553. https://doi.org/10.1016/j.juro.2015.01.086
Marinkovic SP, Moldwin R, Gillen LM, Stanton SL (2009) The management of interstitial cystitis or painful bladder syndrome in women. BMJ 339:b2707–b2707. https://doi.org/10.1136/bmj.b2707
Schrepf A, O’Donnell M, Luo Y et al (2014) Inflammation and inflammatory control in interstitial cystitis/bladder pain syndrome: associations with painful symptoms. Pain 155:1755–1761. https://doi.org/10.1016/j.pain.2014.05.029
Article PubMed PubMed Central Google Scholar
Moldwin RM, Nursey V, Yaskiv O et al (2022) Immune cell profiles of patients with interstitial cystitis/bladder pain syndrome. J Transl Med 20:97. https://doi.org/10.1186/s12967-022-03236-7
Article PubMed PubMed Central Google Scholar
Jiang Y-H, Peng C-H, Liu H-T, Kuo H-C (2013) Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS One 8:e76779. https://doi.org/10.1371/journal.pone.0076779
Article PubMed PubMed Central Google Scholar
Jin X-W, Wang Q-Z, Zhao Y, et al (2021) An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Transl Androl Urol 10:4120–4131. https://doi.org/10.21037/tau-21-392
Vahedian V, Asadi A, Esmaeili P et al (2020) Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokines. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2019-0052
Vaudry D, Gonzalez BJ, Basille M et al (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324
Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121:294–316. https://doi.org/10.1016/j.pharmthera.2008.11.006
Tsilioni I, Russell IJ, Stewart JM et al (2016) Neuropeptides CRH, SP, HK-1, and inflammatory cytokines IL-6 and TNF are increased in serum of patients with fibromyalgia syndrome, implicating mast cells. J Pharmacol Exp Ther 356:664–672. https://doi.org/10.1124/jpet.115.230060
Article PubMed PubMed Central Google Scholar
Canlı K, Billens A, Van Oosterwijck J et al (2022) Systemic cytokine level differences in patients with chronic musculoskeletal spinal pain compared to healthy controls and its association with pain severity: a systematic review. Pain Med 23:1947–1964. https://doi.org/10.1093/pm/pnac091
Sant GR, Kempuraj D, Marchand JE, Theoharides TC (2007) The mast cell in interstitial cystitis: role in pathophysiology and pathogenesis. Urology 69:S34–S40. https://doi.org/10.1016/j.urology.2006.08.1109
Theoharides TC, Kempuraj D, Sant GR (2001) Mast cell involvement in interstitial cystitis: a review of human and experimental evidence. Urology 57:47–55. https://doi.org/10.1016/S0090-4295(01)01129-3
Erickson DR, Belchis DA, Dabbs DJ (1997) Inflammatory cell types and clinical features of interstitial cystitis. J Urol 158:790–793. https://doi.org/10.1097/00005392-199709000-00025
Gonzalez-Rey E, Delgado M (2006) Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology 131:1799–1811. https://doi.org/10.1053/j.gastro.2006.10.023
Arsenijevic T, Gregoire F, Chiadak J et al (2013) Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS One 8:e72607. https://doi.org/10.1371/journal.pone.0072607
Article PubMed PubMed Central Google Scholar
Taylor RDT, Madsen MG, Krause M et al (2014) Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHPin CA1 pyramidal neurons by activating multiple signaling pathways. Hippocampus 24:32–43. https://doi.org/10.1002/hipo.22201
Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily*. Endocr Rev 21:619–670. https://doi.org/10.1210/edrv.21.6.0414
Castorina A, Scuderi S, D’Amico AG et al (2014) PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: Involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res 322:108–121. https://doi.org/10.1016/j.yexcr.2013.11.003
Toth D, Reglodi D, Schwieters L, Tamas A (2023) Role of endocrine PACAP in age-related diseases. Front Endocrinol 14:1118927. https://doi.org/10.3389/fendo.2023.1118927
Tanaka M, Szabó Á, Körtési T et al (2023) From CGRP to PACAP, VIP, and beyond: unraveling the next chapters in migraine treatment. Cells 12:2649. https://doi.org/10.3390/cells12222649
Article PubMed PubMed Central Google Scholar
Edvinsson L, Tajti J, Szalárdy L, Vécsei L (2018) PACAP and its role in primary headaches. J Headache Pain 19:21. https://doi.org/10.1186/s10194-018-0852-4
Article PubMed PubMed Central Google Scholar
Reglodi D, Vaczy A, Rubio-Beltran E, MaassenVanDenBrink A (2018) Protective effects of PACAP in ischemia. J Headache Pain 19:19. https://doi.org/10.1186/s10194-018-0845-3
留言 (0)