An Y, Rao H, Bosman G, Ural A (2012) Characterization of carbon nanotube film-silicon Schottky barrier photodetectors. J Vac Sci Technol 30:021805. https://doi.org/10.1116/1.3690645
An Y, Behnam A, Pop E, Bosman G, Ural A (2015) Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. J Appl Phys 118:114307. https://doi.org/10.1063/1.4931142
An H, Kumamoto A, Takezaki H, Ohyama S, Qian Y, Inoue T, Ikuhara Y, Chiashi S, Xiang R, Maruyama S (2016) Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co–W bimetallic catalyst. Nanoscale 8:14523–14529. https://doi.org/10.1039/C6NR02749K
Avouris P, Martel R (2010) Progress in carbon nanotube electronics and photonics. MRS Bull 35:306–313. https://doi.org/10.1557/mrs2010.553
Azoubel S, Magdassi S (2014) Controlling adhesion properties of SWCNT-PET films prepared by wet deposition. ACS Appl Mater Interfaces 6:9265–9271. https://doi.org/10.1021/am501488p
Bagolini A, Boscardin M, Conci P et al. (2015) Micromachined silicon radiation sensors-part 2: fabrication technologies. In: 2015 XVIII AISEM annual conference. pp 1–4
Bardeen J (1947) Surface states and rectification at a metal semi-conductor contact. Phys Rev 71:717–727. https://doi.org/10.1103/PhysRev.71.717
Behnam A, Johnson JL, Choi Y, Günhan Ertosun M, Okyay AK, Kapur P, Saraswat KC, Ural A (2008) Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures. Appl Phys Lett 92:243116. https://doi.org/10.1063/1.2945644
Bulyarskiy S, Saurov A (2017) Doping of carbon nanotubes. Springer, Cham, p 187
Bulyarskiy SV, Bogdanova DA, Kitsyuk EP, Lakalin AV, Pavlov AA, Ryazanov RM, Shamanaev AA, Shaman YuP (2018) Decreasing work function of carbon nanotubes hydrogenated in hydrogen plasma. Techn Phys Lett 44:432–434. https://doi.org/10.1134/S1063785018050164
Cai B, Su Y, Tao Z, Hu J, Zou C, Yang Z, Zhang Y (2018) Highly sensitive broadband single walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Opt Mater 6:1800791. https://doi.org/10.1002/adom.201800791
Cai X, Wang S, Peng L-M (2023) Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res En 2:e9120058. https://doi.org/10.26599/NRE.2023.9120058
Capista D, Passacantando M, Lozzi L, Faella E, Giubileo F, Di Bartolomeo A (2022) Easy fabrication of performant SWCNT-Si photodetector. Electronics 11:271. https://doi.org/10.3390/electronics11020271
Capista D, Lozzi L, Pelella A, Di Bartolomeo A, Giubileo F, Passacantando M (2023) Spatially resolved photo-response of a carbon nanotube/Si photodetector. Nanomater 13:650. https://doi.org/10.3390/nano13040650
Card HC, Rhoderick EH (1971) Studies of tunnel MOS diodes. I. Interface effects in silicon Schottky diodes. J Phys D Appl Phys 4:1589–1601. https://doi.org/10.1088/0022-3727/4/10/319
Castan A, Forel S, Fossard F, Defillet J, Ghedjatti A, Levshov D, Wenseleers W, Cambré S, Loiseau A (2021) Assessing the reliability of the Raman peak counting method for the characterization of SWCNT diameter distributions: a cross characterization with TEM. Carbon 171:968–979. https://doi.org/10.1016/j.carbon.2020.09.012
Chen Y, Lyu M, Zhang Z, Yang F, Li Y (2022) Controlled preparation of single-walled carbon nanotubes as materials for electronics. ACS Cent Sci 8:1490–1505. https://doi.org/10.1021/acscentsci.2c01038
Article PubMed PubMed Central Google Scholar
Chen C, Zhao YM, Yu HL, Jiao XY, Hu XG, Li X, Hou PX, Liu C, Cheng HM (2023) High-performance infrared photodetector based on single-wall carbon nanotube films. Carbon 206:150–156. https://doi.org/10.1016/j.carbon.2023.02.020
Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87. https://doi.org/10.1063/1.97359
Collins PG, Bradley K, Ishigami M, Zett A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804. https://doi.org/10.1126/science.287.5459.1801
Cordeiro CE, Delfino A, Frederico T (2009) Theoretical study of work function of conducting single-walled carbon nanotubes by a non-relativistic field theory approach. Carbon 47:690–695. https://doi.org/10.1016/j.carbon.2008.11.004
Cowley AM, Sze SM (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36:3212–3220. https://doi.org/10.1063/1.1702952
Crowell CR, Shore HB, La Bate EE (1965) Surface-state and interface effects in Schottky barriers at n-type silicon surfaces. J Appl Phys 36:3843–3850. https://doi.org/10.1063/1.1713959
Danilyuk AL, Komissarov IV, Labunov VA, Le Normand F, Derory A, Hernandez JM, Tejada J, Prischepa SL (2015) Manifestation of coherent magnetic anisotropy in a carbon nanotube matrix with low ferromagnetic nanoparticle content. New J Phys 17:023073. https://doi.org/10.1088/1367-2630/17/2/023073
De Nicola F, Salvato M, Cirillo C, Grivellari M, Boscardin M, Passacantando M, Nardone M, De Matteis F, Motta N, De Crescenzi M, Castrucci P (2017) 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon 114:402–410. https://doi.org/10.1016/j.carbon.2016.12.050
Di Bartolomeo A (2016) Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58. https://doi.org/10.1016/j.physrep.2015.10.003
Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805. https://doi.org/10.1021/nl803496s
Ding EX, Jiang H, Zhang Q, Tian Y, Laiho P, Hussain A, Liao Y, Wei N, Kauppinen EI (2017) Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale 9:17601–17609. https://doi.org/10.1039/C7NR05554D
Ding EX, Liu P, Khan AT, Zhang Q, Wei N, Jiang H, Kauppinen EI (2022) Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility. Carbon 195:92–100. https://doi.org/10.1016/j.carbon.2022.04.020
Ding EX, Liu P, Yoon HH, Ahmed F, Du M, Shafi AM, Mehmood N, Kauppinen EI, Sun Z, Lipsanen H (2023) Highly sensitive MoS2 photodetectors enabled with a dry-transferred transparent carbon nanotube electrode. ACS Appl Mater Interfaces 15:4216–4225
Article PubMed PubMed Central Google Scholar
Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99. https://doi.org/10.1016/j.physrep.2004.10.006
Dronina LA, Kovalchuk NG, Danilyuk AL, Lutsenko EV, Danilchyk AV, Prischepa SL (2025) Temperature dependent parameters of single walled carbon nanotubes/Si heterojunctions, to be published
Fang H, Hu W (2017) Photogating in low dimensional photodetectors. Adv Sci 4:1700323. https://doi.org/10.1002/advs.201700323
Fang H, Wu P, Wang P, Zheng Z, Tang Y, Ho JC, Chen G, Wang Y, Shan C, Cheng X, Zhang J, Hu W (2019) Global photocurrent generation in phototransistors based on single-walled carbon nanotubes toward highly sensitive infrared detection. Adv Optical Mater. https://doi.org/10.1002/adom.201900597
Freeouf JL, Jackson TN, Laux SE, Woodall JM (1982) Effective barrier heights of mixed phase contacts: size effects. Appl Phys Lett 40:634–636. https://doi.org/10.1063/1.93171
Furno M, Bonani F, Ghione G (2007) Transfer matrix method modelling of inhomogeneous Schottky barrier diodes on silicon carbide. Solid-State Electron 51:466–474. https://doi.org/10.1016/j.sse.2007.01.028
Goswami L, Aggarwal N, Vashishtha P, Jain SK, Nirantar S, Ahmed J, Majeed Khan MA, Pangey R, Gupta G (2021) Fabrication of GaN nano-towers based self-powered UV photodetector. Sci Rep 11:10859
Article PubMed PubMed Central Google Scholar
Grujicic M, Cao G, Gersten B (2003) Enhancement of field emission in carbon nanotubes through adsorption of polar molecules. Appl Surf Sci 206:167–177. https://doi.org/10.1016/S0169-4332(02)01211-4
Han L, Yang M, Wen P, Gao W, Huo N, Li J (2021) A high performance self-powered photodetector based on a 1D Te–2D WS2 mixed-dimensional heterostructure. Nanoscale Adv 3:2657–2665. https://doi.org/10.1039/D1NA00073J
留言 (0)