Abichabki N et al (2022) Potential cannabidiol (CBD) repurposing as antibacterial and promising therapy of CBD plus Polymyxin B (PB) against PB-resistant gram-negative bacilli. Sci Rep 12(1):1–15. https://doi.org/10.1038/s41598-022-10393-8
Ahmad I, Ahmad S (2019) Antibacterial drug discovery to combat MDR: natural compounds nanotechnology and novel synthetic sources. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-13-9871-1
Akshaya T, Aravind M, Manoj Kumar S, Baskaran D (2022) Nanoparticles synthesized from Dypsis lutescens leaf extract. J Chil Chem Soc 2:5477–5483
Alkalah C (2016) Tipos de semillas de Cannabis sativa. Piranha 19(5):1–23
Ángeles G, Brindis F, Niizawa S, Martínez R (2014) Cannabis sativa L., una planta singular. Revista Mexicana De Ciencias Farmacéuticas 45:1–7
Angeliki K et al (2018) Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanopart Res 20(3):2–7. https://doi.org/10.1007/s11051-018-4152-3
Anju TR et al (2021) Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Mater Today Proc 43:3956–3960. https://doi.org/10.1016/j.matpr.2021.02.665
Argueta L et al (2018) Propiedades antimicrobianas y citotóxicas de un adhesivo de uso ortodóncico adicionado con nanopartículas de plata. Revista Interdisciplinaria En Nanociencias y Nanotecnología 12(22):10. https://doi.org/10.22201/ceiich.24485691e.2019.22.62550
Asharani PV et al (2009) Cytotoxicity and genotoxicity of silver. ACS Nano 3(2):279–290
Article CAS PubMed Google Scholar
Atkins CG, Buckley K, Blades MW, Turner RFB (2017) Raman spectroscopy of blood and blood components. Appl Spectrosc 71(5):767–793. https://doi.org/10.1177/0003702816686593
Article CAS PubMed Google Scholar
Bano N et al (2023) Antibacterial efficacy of synthesized silver nanoparticles of microbacterium proteolyticum LA2(R) and Streptomyces rochei LA2(O) against biofilm forming meningitis causing microbes. Sci Rep 13(1):1–14. https://doi.org/10.1038/s41598-023-30215-9
Bhiradi I, Hiremath SS (2022) Energy storage and photosensitivity of in-situ formed silver–copper (Ag–Cu) heterogeneous nanoparticles generated using multi-tool micro electro discharge machining process. J Alloy Compd 897:1–15. https://doi.org/10.1016/j.jallcom.2021.162950
Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 101:184–190. https://doi.org/10.1016/j.saa.2012.09.031
Borowska M, Jankowski K (2023) Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: current status and future prospects. Anal Bioanal Chem 415(18):4023–4038. https://doi.org/10.1007/s00216-023-04641-7
Article CAS PubMed PubMed Central Google Scholar
Bouafia A et al (2021) The recent progress on silver nanoparticles: synthesis and electronic applications. Nanomaterials 11(9):1–30. https://doi.org/10.3390/nano11092318
Caron J, Markusen JR (2016) Cosecha, secado y curado de Cannabis sativa. I+D Piranha 19:1–23
Chatel G (2019) Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction. Curr Opin Green Sustain Chem 15:1–6. https://doi.org/10.1016/j.cogsc.2018.07.004
Chhangte V (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 11(5):2804–2837. https://doi.org/10.1039/D0RA09941D
Chouhan S, Guleria S (2020) Green synthesis of AgNPs using Cannabis sativa leaf extract: characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater Sci Energy Technol 3:536–544. https://doi.org/10.1016/j.mset.2020.05.004
Clementson L (2019) Dataset on the absorption characteristics of extracted phytoplankton pigments. Data Brief 24:1–7. https://doi.org/10.1016/j.dib.2019.103875
Corrales L, Caycedo L (2020) Principios físicoquímicos de los colorantes utilizados en microbiología principios físicoquímicos de los colorantes. Nova 18(33):1–28. https://doi.org/10.22490/24629448.3701
Csakvari AC et al (2021) Of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Smart Nanosyst Biomed Optoelectron Catal 6(1):1–22
Dikshit P et al (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8):1–35. https://doi.org/10.3390/catal11080902
Dubkov S et al (2020) SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation. Opt Mater X 7:1–9. https://doi.org/10.1016/j.omx.2020.100055
Durán N (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100(15):6555–6570. https://doi.org/10.1007/s00253-016-7657-7
Article CAS PubMed Google Scholar
Fariñas MC, Martínez-Martínez L (2013) Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, Pseudomonas aeruginosa, Acinetobacter baumannii y otros bacilos gramnegativos no fermentadores. Enferm Infecc Microbiol Clin 31(6):402–409. https://doi.org/10.1016/j.eimc.2013.03.016
Femi-Adepoju AG et al (2019) Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon 5(4):e01543. https://doi.org/10.1016/j.heliyon.2019.e01543
Article CAS PubMed PubMed Central Google Scholar
Galatage ST et al (2021) Silver nanoparticles: properties, synthesis, characterization, applications and future trends. Silver Micro-Nanopart Prop Synth Charact Appl 52:1–19. https://doi.org/10.5772/intechopen.99173
Gallo J, Ossa C (2022) Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel. Ingeniería y Desarrollo 37(01):88–104. https://doi.org/10.14482/inde.37.1.6201
Goreshnik E (2010) Synthesis, crystal structure and Raman spectra of AgBF4·C3O3(NC3H5)3·H2O, a silver(I) π-complex with 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione. J Organomet Chem 695(19–20):1–4. https://doi.org/10.1016/j.jorganchem.2010.06.004
Guo J et al (2022) Conjugated polyelectrolyte/silver bromide nanocomposites: highly durable and robust antibacterial materials. Appl Bio Mater 5(1):183–189. https://doi.org/10.1021/acsabm.1c01030
Jancy J, Rani A, Jayakrishnan R, Vinoy T (2022) Resonant energy transfer between plasmonic silver and biomolecule for colour tuning and white light emission. JCIS Open 8:1–6. https://doi.org/10.1016/j.jciso.2022.100065
Jiménez Mejía R, Ramírez Herrera ÁD, Orozco Ceja JA, González Domínguez MI (2023) Biosíntesis de nanopartículas de plata con actividad antimicrobiana por Pseudomonas aeruginosa ambiental. Mundo Nano Revista Interdisciplinaria En Nanociencias y Nanotecnología 17(32):1–13. https://doi.org/10.22201/ceiich.24485691e.2024.32.69721
Khodijah Chaerun S, Prabowo BA, Winarko R (2022) Bionanotechnology: the formation of copper nanoparticles assisted by biological agents and their applications as antimicrobial and antiviral agents. Environ Nanotechnol Monit Manag 18:100703. https://doi.org/10.1016/J.ENMM.2022.100703
Khojasteh-Taheri R, Ahmad G et al (2023) Green synthesis of silver nanoparticles using Salvadora persica and Caccinia macranthera extracts: cytotoxicity analysis and antimicrobial activity against antibiotic-resistant bacteria. Appl Biochem Biotechnol 195(8):5120–5135. https://doi.org/10.1007/s12010-023-04407-y
Article CAS PubMed Google Scholar
Kourmouli A et al (2018) Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanopart Res 20(3):1–6.
留言 (0)