Ansari SA, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F (2019) Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the Central Nervous System. Materials 12(3):465. https://doi.org/10.3390/ma12030465
Article CAS PubMed PubMed Central Google Scholar
Belachew N, Tadesse A, Kahsay MH et al (2021) Synthesis of amino acid functionalized Fe3O4 nanoparticles for adsorptive removal of Rhodamine B. Appl Water Sci 11:1–9. https://doi.org/10.1007/s13201-021-01371-y
Bongiovanni R, Jadhav SA (2012) Synthesis and organic functionalization approaches for magnetite (Fe3O4) nanoparticles. Adv Mater 3:356–361
Čampelj S, Pobrežnik M, Landovsky T et al (2023) The influence of catechols on the magnetization of iron oxide nanoparticles. Nanomaterials 13:1822. https://doi.org/10.3390/nano13121822
Article CAS PubMed PubMed Central Google Scholar
Das C, Sen S, Singh T et al (2020) Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials 10:1–19. https://doi.org/10.3390/nano10081615
Dutz S, Clement JH, Eberbeck D et al (2009) Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater 321:1501–1504. https://doi.org/10.1016/j.jmmm.2009.02.073
Engelmann UM, Shasha C, Teeman E et al (2019) Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation. J Magn Magn Mater 471:450–456. https://doi.org/10.1016/j.jmmm.2018.09.041
Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37
González AG, Casillas N, López Z et al (2022) Tetrahydroxyquinone: a suitable coating for ferrofluids used in magnetic hyperthermia. Coatings. https://doi.org/10.3390/coatings12081130
Gopi D, Thameem Ansari M, Kavitha L (2016) Electrochemical synthesis and characterization of cubic magnetite nanoparticle in aqueous ferrous perchlorate medium. Arab J Chem 9:S829–S834. https://doi.org/10.1016/j.arabjc.2011.08.005
Guénin E, Lalatonne Y, Bolley J et al (2014) Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization. J Nanoparticle Res. https://doi.org/10.1007/s11051-014-2596-7
Gutierrez FV, Lima IS, De Falco A et al (2024) The effect of temperature on the synthesis of magnetite nanoparticles by the coprecipitation method. Heliyon 10:e25781. https://doi.org/10.1016/j.heliyon.2024.e25781
Article CAS PubMed PubMed Central Google Scholar
Jain S, Shah J, Dhakate SR et al (2018) Environment-friendly mesoporous magnetite nanoparticles-based hydroelectric cell. J Phys Chem C 122:5908–5916. https://doi.org/10.1021/acs.jpcc.7b12561
Jia T, Hao Y, Qi X et al (2024) Interface engineering and impedance matching strategy to develop core@shell urchin-like NiO/Ni@carbon nanotubes nanocomposites for microwave absorption. J Mater Sci Technol 176:1–12. https://doi.org/10.1016/j.jmst.2023.08.022
Joshi R (2016) Free radical scavenging reactions of tetrahydroxyquinone: a pulse radiolysis study. ChemistrySelect 1:1084–1091. https://doi.org/10.1002/slct.201600030
Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209–2211. https://doi.org/10.1021/cm960157j
Khalil MI (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 8:279–284. https://doi.org/10.1016/j.arabjc.2015.02.008
Kong FY, Li RF, Yao L et al (2019) Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles. Microchim Acta. https://doi.org/10.1007/s00604-019-3273-4
Kritika N, Roy I (2022) Therapeutic applications of magnetic nanoparticles: recent advances. Mater Adv 3:7425–7444. https://doi.org/10.1039/d2ma00444e
León-Reyes Á, Epifani M, Chávez-Capilla T et al (2014) Analysis of the different mechanisms of electrochemical energy storage in magnetite nanoparticles. Int J Electrochem Sci 9:3837–3845
Liang Q, Wang L, Qi X et al (2023) Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J Mater Sci Technol 147:37–46. https://doi.org/10.1016/j.jmst.2022.10.069
Long J, Yu X, Xu E et al (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107. https://doi.org/10.1016/j.carbpol.2015.05.058
Article CAS PubMed Google Scholar
Makuraza J (2015) Vibrational and electronic spectra of natural dyes constituents for solar cell application: DFT and TDDFT study. Int J Mater Sci Appl 4:314. https://doi.org/10.11648/j.ijmsa.20150405.16
Mittal A, Roy I, Gandhi S (2022) Magnetic nanoparticles: an overview for biomedical applications. Magnetochemistry. https://doi.org/10.3390/magnetochemistry8090107
Mosaiab T, Jeong CJ, Shin GJ et al (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C 33:3786–3794. https://doi.org/10.1016/j.msec.2013.05.009
Mosayebi J, Kiyasatfar M, Laurent S (2017) Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthcare Mat. https://doi.org/10.1002/adhm.201700306
Pang SC, Chin SF, Anderson MA (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. J Colloid Interface Sci 311:94–101. https://doi.org/10.1016/j.jcis.2007.02.058
Article CAS PubMed Google Scholar
Patel OPS, Beteck RM, Legoabe LJ (2021) Antimalarial application of quinones: a recent update. Eur J Med Chem 210:113084. https://doi.org/10.1016/j.ejmech.2020.113084
Article CAS PubMed Google Scholar
Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan (2013) Introduction to Spectroscopy. CENGAGE Learning, USA
Peiravi M, Eslami H, Ansari M, Zare-Zardini H (2022) Magnetic hyperthermia: potentials and limitations. J Indian Chem Soc 99:100269. https://doi.org/10.1016/j.jics.2021.100269
Peng Y, Fu S, Liu H, Lucia LA (2016) Determining esterase activity. BioResources 11:10099–10111
Poluektova VA, Romanyuk DS, Cherkashina NI, Starchenko SA (2021) Features of the Chemical Interaction of 2-Furaldehyde and 1,3,5-Trihydroxybenzene in an Alkaline Medium to Obtain a Plasticizing Additive. ChemEngineering. https://doi.org/10.3390/chemengineering5040084
Preisler PW, Berger L (1942) Preparation of tetrahydroxyquinone and rhodizonic acid salts from the product of the oxidation of inositol with nitric acid. J Am Chem Soc 64:67–69. https://doi.org/10.1021/ja01253a016
Preisler PW, Berger L, Hill ES (1947) Oxidation-reduction potentials and ionization constants of the reversible series: hexahydroxybenzene-tetrahydroxyquinone-rhodizonic acid. J Am Chem Soc 69:326–329. https://doi.org/10.1021/ja01194a049
Quanguo H, Lei Z, Wei W et al (2010) Preparation and magnetic comparison of silane-functionalized magnetite nanoparticles. Sensors Mater 22:285–295. https://doi.org/10.18494/sam.2010.622
留言 (0)