Microwave-assisted biosynthesis of silver nanoparticles for potential antibacterial activity

Abou El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140. https://doi.org/10.1016/j.arabjc.2010.04.008

Article  CAS  Google Scholar 

Ajayi E, Afolayan A (2017) Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv Nat Sci: Nanosci 8:015017. https://doi.org/10.1088/2043-6254/aa5cf7

Article  CAS  Google Scholar 

Aladhadh M (2023) A review of modern methods for the detection of foodborne pathogens. Microorganisms 11:1111. https://doi.org/10.3390/microorganisms11051111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol. https://doi.org/10.1155/2019/8642303

Article  PubMed  PubMed Central  Google Scholar 

Awasthi G, Maheshwari T, Sharma R, Kumawat TK, Singh GP, Lodha P (2023) Actions and reactions of plants derived zinc-oxide nano-particles. Mater Today Proc 95:77–87. https://doi.org/10.1016/j.matpr.2023.08.157

Article  CAS  Google Scholar 

Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem 4:29. https://doi.org/10.1186/2228-5547-4-29

Article  Google Scholar 

Basera P, Lavania M, Agnihotri A, Lal B (2019) Analytical investigation of Cymbopogon citratus and exploiting the potential of developed silver nanoparticle against the dominating species of pathogenic bacteria. Front Microbiol 10:282. https://doi.org/10.3389/fmicb.2019.00282

Article  PubMed  PubMed Central  Google Scholar 

Chamoli P, Das MK, Kar KK (2017) Green synthesis of silver-graphene nanocomposite-based transparent conducting film. Physica E Low Dimens Syst Nanostruct 90:76–84. https://doi.org/10.1016/j.physe.2017.03.015

Article  CAS  Google Scholar 

Correa MG, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL (2020) Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol 11:1450–1469. https://doi.org/10.3762/bjnano.11.129

Article  CAS  Google Scholar 

Epand RM, Walker C, Epand RF, Magarvey NA (2015) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 1858:980–987. https://doi.org/10.1016/j.bbamem.2015.10.018

Article  PubMed  CAS  Google Scholar 

Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. https://doi.org/10.1021/ar400309b

Article  PubMed  CAS  Google Scholar 

Geetha N, Geetha TS, Manonmani P, Thiyagarajan M (2014) Green synthesis of silver nanoparticles using CymbopoganCitratus (Dc) Stapf. Extract and its antibacterial activity. Aus J Basic Appl Sci 8(3):324–331

CAS  Google Scholar 

Ishida T (2018) Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicol 4:345–350

Article  Google Scholar 

Kala A, Verma R, Meenu M, Gambhir L, Chamoli P (2023) Antibacterial activity of Ag-graphene nanocomposites against gram-positive and gram-negative bacteria. Curr Mater Sci. https://doi.org/10.2174/2666145417666230825163555

Article  Google Scholar 

Kasthuri J, Kathiravan K, Rajendiran NJNR (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanoparticle Res 11:1075–1085. https://doi.org/10.1007/s11051-008-9494-9

Article  CAS  Google Scholar 

Keshari A, Pal G, Saxena S, Srivastava R, Srivashtav V (2020) Fabrication and characterization of biosynthesized silver nanoparticles using cymbopogon citratus and evaluation of its antioxidant, free radicals and reducing power activity. Nanomed Res J 5(2):132–142. https://doi.org/10.22034/nmrj.2020.02.004

Article  CAS  Google Scholar 

Khan M, Khan AU, Alam MJ, Park S, Alam M (2020) Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. J Environ Anal Chem 100:1390–1401. https://doi.org/10.1080/03067319.2019.1654465

Article  CAS  Google Scholar 

Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A (2022) Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 14:3987–4017. https://doi.org/10.1039/d1nr07643d

Article  PubMed  CAS  Google Scholar 

Liao J, He S, Guo S, Luan P, Mo L, Li J (2019) Antibacterial performance of a mussel-inspired polydopamine-treated Ag/graphene nanocomposite material. Materials 12(20):3360. https://doi.org/10.3390/ma12203360

Article  PubMed  PubMed Central  CAS  Google Scholar 

Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317. https://doi.org/10.1016/j.jscs.2012.04.007

Article  Google Scholar 

Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555. https://doi.org/10.3389/fmicb.2018.01555

Article  PubMed  PubMed Central  Google Scholar 

Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9:59. https://doi.org/10.3390/ph9030059

Article  PubMed  PubMed Central  CAS  Google Scholar 

Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP (2011) Rapid biosynthesis of silver nanoparticles using Cymbopogancitratus (lemongrass) and its antimicrobial activity. Nanomicro Lett 3:189–194. https://doi.org/10.1007/BF03353671

Article  CAS  Google Scholar 

Meena PR, Singh AP, Tejavath KK (2020) Biosynthesis of silver nanoparticles using cucumisprophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5:5520. https://doi.org/10.1021/acsomega.0c00155

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mehta BK, Chhajlani M, Shrivastava BD (2017) Green synthesis of silver nanoparticles and their characterization by XRD. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/836/1/012050

Article  Google Scholar 

Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya-a first report. J Plant Biotechnol 18:83–86. https://doi.org/10.1007/BF03263300

Article  CAS  Google Scholar 

Nithya N, Bhoopathi G, Magesh G, Kumar CDN (2018) Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity. Mater Sci Semicond Process 83:70–82. https://doi.org/10.1016/j.mssp.2018.04.011

Article  CAS  Google Scholar 

Punitha VN, Vijayakumar S, Sakthivel B, Praseetha PK (2020) Protection of neuronal cell lines, antimicrobial and photocatalytic behaviours of eco-friendly TiO2 nanoparticles. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104343

Article  Google Scholar 

Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291. https://doi.org/10.1080/21691401.2016.1241792

Article  PubMed  CAS  Google Scholar 

Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144:396–411. https://doi.org/10.1039/C8AN01488D

Article  PubMed  CAS  Google Scholar 

Raut RW, Lakkakula JR, Kolekar NS, Mendhulkar VD, Kashid SB (2009) Phytosynthesis of silver nanoparticle using Gliricidiasepium (Jacq.). Curr Nanosci 5:117–122. https://doi.org/10.2174/157341309787314674

Article  CAS 

留言 (0)

沒有登入
gif