Zhu, L. & Brangwynne, C. P. Nuclear bodies: the emerging biophysics of nucleasmic phases. Curr. Opin. Cell Biol. 34, 23–30 (2015).
Article PubMed PubMed Central CAS Google Scholar
Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).
Article PubMed PubMed Central CAS Google Scholar
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
Article PubMed PubMed Central CAS Google Scholar
Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023).
Article PubMed CAS Google Scholar
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Article PubMed PubMed Central CAS Google Scholar
Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
Article PubMed PubMed Central CAS Google Scholar
Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).
Article PubMed CAS Google Scholar
Niu, X. et al. Biomolecular condensates: formation mechanisms, biological functions, and therapeutic targets. MedComm 4, e223 (2023).
Article PubMed PubMed Central CAS Google Scholar
Zhou, C. The molecular and functional interaction between membrane-bound organelles and membrane-less condensates. Front. Cell Dev. Biol. 10, 896305 (2022).
Article PubMed PubMed Central Google Scholar
Zhao, Y. G. & Zhang, H. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev. Cell 55, 30–44 (2020).
Article PubMed CAS Google Scholar
Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).
Article PubMed CAS Google Scholar
Wilson, E. B. The structure of protoplasm. Science 10, 33–45 (1899).
Article PubMed CAS Google Scholar
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Article PubMed CAS Google Scholar
Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).
Article PubMed PubMed Central CAS Google Scholar
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).
Article PubMed PubMed Central CAS Google Scholar
Henis, Y. I., Rotblat, B. & Kloog, Y. FRAP beam-size analysis to measure palmitoylation-dependent membrane association dynamics and microdomain partitioning of Ras proteins. Methods 40, 183–190 (2006).
Article PubMed CAS Google Scholar
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).
Article PubMed PubMed Central CAS Google Scholar
Nott, T. J. et al. Phase transition of a disordered Nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).
Article PubMed PubMed Central CAS Google Scholar
Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).
Article PubMed PubMed Central CAS Google Scholar
Shao, Y. et al. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat. Cell Biol. 26, 86–99 (2024).
Article PubMed CAS Google Scholar
Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e114 (2017).
Article PubMed CAS Google Scholar
Rademacher, A., Erdel, F., Weinmann, R. & Rippe, K. Assessing the phase separation propensity of proteins in living cells through optodroplet formation. Methods Mol. Biol. 2563, 395–411 (2023).
Paci, G. & Lemke, E. A. Shining a light on phase separation in the cell. Cell 168, 11–13 (2017).
Article PubMed CAS Google Scholar
Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).
Article PubMed CAS Google Scholar
Khamo, J. S., Krishnamurthy, V. V., Sharum, S. R., Mondal, P. & Zhang, K. Applications of optobiology in intact cells and multicellular organisms. J. Mol. Biol. 429, 2999–3017 (2017).
Article PubMed CAS Google Scholar
Kim, C. & Shin, Y. An optogenetic toolkit for the control of phase separation in living cells. Methods Mol. Biol. 2563, 383–394 (2023).
Abyzov, A. S. & Schmelzer, J. W. Nucleation versus spinodal decomposition in confined binary solutions. J. Chem. Phys. 127, 114504 (2007).
Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature 599, 503–506 (2021).
Article PubMed CAS Google Scholar
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
Article PubMed PubMed Central CAS Google Scholar
Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e421 (2019).
Article PubMed PubMed Central CAS Google Scholar
Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e646 (2019).
留言 (0)