In defence of ferroptosis

Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).

Article  PubMed  CAS  Google Scholar 

Feng, S. et al. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 4, 33 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 113, E4966–E4975 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell. Biol. 25, 133–155 (2024).

Seibt, T. M., Proneth, B. & Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 133, 144–152 (2019).

Article  PubMed  CAS  Google Scholar 

Weaver, K. & Skouta, R. The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines. 10, 891 (2022).

Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

Article  PubMed  CAS  Google Scholar 

Shimada, K., Hayano, M., Pagano, N. C. & Stockwell, B. R. Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity. Cell Chem. Biol. 23, 225–235 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

Article  PubMed  CAS  Google Scholar 

Drew, R. & Miners, J. O. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol. 33, 2989–2994, (1984).

Article  PubMed  CAS  Google Scholar 

Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. elife 3, e02523 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Gaschler, M. M. et al. FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nakamura, T. et al. A tangible method to assess native ferroptosis suppressor activity. Cell Rep. Methods. 4, 100710 (2024).

Shintoku, R. et al. Lipoxygenase‐mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108, 2187–2194 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bae, C. et al. Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio. 17, 100457 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Belaidi, A. A. et al. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol. Psychiatry. 29, 211–220 (2024).

Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bassi, M. T. et al. Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc. Pflug. Arch. 442, 286–296 (2001).

Article  CAS  Google Scholar 

McCullagh, E. A. & Featherstone, D. E. Behavioral characterization of system xc-mutant mice. Behav. Brain Res. 265, 1–11 (2014).

Article  PubMed  CAS  Google Scholar 

De Bundel, D. et al. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci. 31, 5792–5803 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).

Article  PubMed  CAS  Google Scholar 

Jyotsana, N., Ta, K. T. & DelGiorno, K. E. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front. Oncol. 12, 858462 (2022).

Qiu, B. et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 187, 1177–1190.e1118 (2024).

Article  PubMed  CAS  Google Scholar 

von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).

Article  Google Scholar 

Alborzinia, H. et al. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun. Biol. 1, 210 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e1705 (2021).

Article  PubMed  CAS  Google Scholar 

Minami, J. K. et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 41, 1048–1060.e1049 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 25, 13–33 (2024).

Article  PubMed  CAS  Google Scholar 

Anandhan, A. et al. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis. Cell Chem. Biol. 27, 436–447 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rodencal, J. et al. Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem. Biol. 31, 234–248.e213 (2024).

Article  PubMed  CAS  Google Scholar 

Lee, H. et al. Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nat. Commun. 15, 79 (2024).

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif