Aho VTE, Houser MC, Pereira PAB et al (2021) Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener 16:1–14
Amabebe E, Robert FO, Agbalalah T, Orubu ESF (2020) Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr 123:1127–1137
Amara J, Itani T, Hajal J et al (2024) Circadian rhythm perturbation aggravates gut microbiota dysbiosis in dextran sulfate sodium-induced colitis in mice. Nutrients 16:247
CAS PubMed PubMed Central Google Scholar
Angoa-Pérez M, Zagorac B, Anneken JH et al (2020) Repetitive, mild traumatic brain injury results in a progressive white matter pathology, cognitive deterioration, and a transient gut microbiota dysbiosis. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-65972-4
Balasubramanian R, Bazaz MR, Pasam T et al (2022) Involvement of microbiome gut–brain axis in neuroprotective effect of quercetin in mouse model of repeated mild traumatic brain injury. NeuroMolecular Med 1–13. https://doi.org/10.1007/S12017-022-08732-Z
Belarbi K, Jopson T, Tweedie D et al (2012) TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 9:1–13
Bolton Hall AN, Joseph B, Brelsfoard JM, Saatman KE (2016) Repeated closed head injury in mice results in sustained motor and memory deficits and chronic cellular changes. PLoS ONE 11:e0159442
PubMed PubMed Central Google Scholar
Borsini A, Di Benedetto MG, Giacobbe J, Pariante CM (2020) Pro-and anti-inflammatory properties of interleukin in vitro: relevance for major depression and human hippocampal neurogenesis. Int J Neuropsychopharmacol 23:738–750
CAS PubMed PubMed Central Google Scholar
Brett BL, Gardner RC, Godbout J et al (2022) Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry 91:498–507
Broussard JI, Acion L, De Jesús-Cortés H et al (2018) Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice. Brain Inj 32:113–122
Cammann D, Lu Y, Cummings MJ et al (2023) Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci Rep 13:5258
CAS PubMed PubMed Central Google Scholar
de Paiva IHR, Maciel LM, da Silva RS et al (2024) Prebiotics modulate the microbiota–gut–brain axis and ameliorate anxiety and depression-like behavior in HFD-fed mice. Food Res Int 114153
Fang I-M, Yang C-M, Yang C-H (2015) Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats. Exp Eye Res 130:38–50
Fehily B, Fitzgerald M (2017) Repeated mild traumatic brain injury: potential mechanisms of damage. Cell Transpl 26:1131–1155
Fekete M, Lehoczki A, Major D et al (2024) Exploring the influence of gut–brain Axis Modulation on Cognitive Health: a Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 16:789
CAS PubMed PubMed Central Google Scholar
Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D (2021) A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 181:877–889
George AK, Behera J, Homme RP et al (2021) Rebuilding microbiome for mitigating traumatic brain injury: importance of restructuring the gut-microbiome-brain axis. Mol Neurobiol 58:3614–3627
CAS PubMed PubMed Central Google Scholar
Ghuge S, Rahman Z, Bhale NA et al (2023) Multistrain probiotic rescinds quinpirole-induced obsessive-compulsive disorder phenotypes by reshaping of microbiota gut-brain axis in rats. Pharmacol Biochem Behav 232:173652
Greer K, Basso EKG, Kelly C et al (2020) Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairments. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-72380-1
Gu N, Yan J, Tang W et al (2024) Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 21:147
CAS PubMed PubMed Central Google Scholar
Guo C, Zhang Y, Ling T et al (2022) Chitosan oligosaccharides alleviate colitis by regulating intestinal microbiota and pparγ/SIRT1-mediated NF-κB pathway. Mar Drugs 20:96
CAS PubMed PubMed Central Google Scholar
Gustafsson D, Klang A, Thams S, Rostami E (2021) The role of BDNF in experimental and clinical traumatic brain injury. Int J Mol Sci 22:3582
CAS PubMed PubMed Central Google Scholar
Gyengesi E, Rangel A, Ullah F et al (2019) Chronic microglial activation in the GFAP-IL6 mouse contributes to age-dependent cerebellar volume loss and impairment in motor function. Front Neurosci 13:303
PubMed PubMed Central Google Scholar
He N, Wang S, Lv Z et al (2020) Low molecular weight chitosan oligosaccharides (LMW-COSs) prevent obesity-related metabolic abnormalities in association with the modification of gut microbiota in high-fat diet (HFD)-fed mice. Food Funct 11:9947–9959
Horn J, Mayer DE, Chen S, Mayer EA (2022) Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 12:164
CAS PubMed PubMed Central Google Scholar
Iesanu MI, Zahiu CDM, Dogaru I-A et al (2022) Melatonin–Microbiome two-sided interaction in dysbiosis-associated conditions. Antioxidants 11:2244
CAS PubMed PubMed Central Google Scholar
Jia S, Lu Z, Gao Z et al (2016) Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1–42-induced rat model of Alzheimer’s disease. Int J Biol Macromol 83:416–425
Kane MJ, Angoa-Pérez M, Briggs DI et al (2012) A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods 203:41–49. https://doi.org/10.1016/J.JNEUMETH.2011.09.003
Kim M-S, Sung M-J, Seo S-B et al (2002) Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid β peptide and interleukin-1β. Neurosci Lett 321:105–109
Kong XF, Zhou XL, Lian GQ et al (2014) Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livest Sci 160:97–101
Le Roy CI, Mappley LJ, La Ragione RM et al (2016) NMR-based metabolic characterization of chicken tissues and biofluids: a model for avian research. Metabolomics 12:1–14
Lee A, Henderson R, Aylward J, McCombe P (2024) Gut symptoms, Gut Dysbiosis and gut-derived toxins in ALS. Int J Mol Sci 25:1871
CAS PubMed PubMed Central Google Scholar
Li L, Liu T, Shi Y (2024) Treatment of preterm brain injury via gut-microbiota–metabolite–brain axis. CNS Neurosci Ther 30:e14556
Lima Giacobbo B, Doorduin J, Klein HC et al (2019) Brain-derived neurotrophic factor in Brain disorders: Focus on Neuroinflammation. Mol Neurobiol 56:3295–3312. https://doi.org/10.1007/s12035-018-1283-6
Article CAS PubMed Google Scholar
Lindquist LK, Love HC, Elbogen EB (2017) Traumatic brain injury in Iraq and Afghanistan veterans: new results from a national random sample study. J Neuropsychiatry Clin Neurosci 29:254–259
PubMed PubMed Central Google Scholar
Liu Q, Wang Z, Sun S et al (2024) Association of blast exposure in military breaching with intestinal permeability blood biomarkers associated with leaky gut. Int J Mol Sci 25:3549
CAS PubMed PubMed Central Google Scholar
Logan RW, McClung CA (2019) Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 20:49–65
CAS PubMed PubMed Central Google Scholar
Lu S, Ge QQ, Yang MS et al (2024) Decoupling the mutual promotion of inflammation and oxidative stress mitigates cognitive decline and depression-like behavior in rmTBI mice by promoting myelin renewal and neuronal survival. Biomed Pharmacother 173:116419. https://doi.org/10.1016/j.biopha.2024.116419
留言 (0)