Apolipoprotein B-containing lipoproteins in atherogenesis

Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

Article  PubMed  Google Scholar 

Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

Article  PubMed  Google Scholar 

Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

Article  PubMed  Google Scholar 

Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

Article  PubMed  PubMed Central  Google Scholar 

Camejo, G., Lopez, A., Vegas, H. & Paoli, H. The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis 21, 77–91 (1975).

Article  PubMed  Google Scholar 

Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).

Article  PubMed  Google Scholar 

Segrest, J. P. et al. Apolipoprotein B-100: conservation of lipid-associating amphipathic secondary structural motifs in nine species of vertebrates. J. Lipid Res. 39, 85–102 (1998).

Article  PubMed  Google Scholar 

Boren, J., Taskinen, M. R., Bjornson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19, 577–592 (2022).

Article  PubMed  Google Scholar 

Frank, P. G. & Lisanti, M. P. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr. Opin. Lipidol. 15, 523–529 (2004).

Article  PubMed  Google Scholar 

Fernandez-Hernando, C. et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 10, 48–54 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Frank, P. G., Pavlides, S. & Lisanti, M. P. Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res. 335, 41–47 (2009).

Article  PubMed  Google Scholar 

Armstrong, S. M. et al. Novel assay for detection of LDL transcytosis across coronary endothelium reveals an unexpected role for SR-B1 [abstract]. Circulation 130 (Suppl. 2), A11607 (2014).

Google Scholar 

Kraehling, J. R. et al. Genome-wide RNAi screen ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Minick, C. R., Stemerman, M. G. & Insull, W. Jr Effect of regenerated endothelium on lipid accumulation in the arterial wall. Proc. Natl Acad. Sci. USA 74, 1724–1728 (1977).

Article  PubMed  PubMed Central  Google Scholar 

Minick, C. R., Stemerman, M. B. & Insull, W. Jr Role of endothelium and hypercholesterolemia in intimal thickening and lipid accumulation. Am. J. Pathol. 95, 131–158 (1979).

PubMed  PubMed Central  Google Scholar 

Armstrong, S. M. et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc. Res. 108, 268–277 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Sessa, W. C. Estrogen reduces LDL (low-density lipoprotein) transcytosis. Arterioscler. Thromb. Vasc. Biol. 38, 2276–2277 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ghaffari, S., Naderi Nabi, F., Sugiyama, M. G. & Lee, W. L. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler. Thromb. Vasc. Biol. 38, 2283–2294 (2018).

Article  PubMed  Google Scholar 

Mathur, P., Ostadal, B., Romeo, F. & Mehta, J. L. Gender-related differences in atherosclerosis. Cardiovasc. Drugs Ther. 29, 319–327 (2015).

Article  PubMed  Google Scholar 

Bian, F., Yang, X. Y., Xu, G., Zheng, T. & Jin, S. CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells. Front. Pharmacol. 10, 40 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Jia, X. et al. VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis. Metabolism 135, 155274 (2022).

Article  PubMed  Google Scholar 

Arsenault, B. J., Carpentier, A. C., Poirier, P. & Despres, J. P. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: use and abuse of the body mass index. Atherosclerosis 394, 117546 (2024).

Article  PubMed  Google Scholar 

Bartels, E. D., Christoffersen, C., Lindholm, M. W. & Nielsen, L. B. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression. Circ. Res. 117, 933–942 (2015).

Article  PubMed  Google Scholar 

Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors – a review. Cardiovasc. Res. 114, 35–52 (2018).

Article  PubMed  Google Scholar 

van den Berg, B. M., Spaan, J. A., Rolf, T. M. & Vink, H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290, H915–H920 (2006).

Article  PubMed  Google Scholar 

Lewis, J. C., Taylor, R. G., Jones, N. D., St Clair, R. W. & Cornhill, J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab. Invest. 46, 123–138 (1982).

PubMed  Google Scholar 

Cancel, L. M., Ebong, E. E., Mensah, S., Hirschberg, C. & Tarbell, J. M. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252, 136–146 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Banerjee, S., Mwangi, J. G., Stanley, T. K., Mitra, R. & Ebong, E. E. Regeneration and assessment of the endothelial glycocalyx to address cardiovascular disease. Ind. Eng. Chem. Res. 60, 17328–17347 (2021).

Article  Google Scholar 

Faber, M. The human aorta; sulfate-containing polyuronides and the deposition of cholesterol. Arch. Pathol. 48, 342–350 (1949).

Google Scholar 

Camejo, G. et al. Differences in the structure of plasma low-density lipoproteins and their relationship to the extent of interaction with arterial wall-components. Ann. N. Y. Acad. Sci. 275, 153–168 (1976).

Article  PubMed  Google Scholar 

Camejo, G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv. Lipid Res. 19, 1–53 (1982).

Article  PubMed 

留言 (0)

沒有登入
gif