Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).
Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).
Article PubMed PubMed Central Google Scholar
Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
Article PubMed PubMed Central Google Scholar
Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).
Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).
Article PubMed PubMed Central Google Scholar
Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
Article PubMed PubMed Central Google Scholar
Camejo, G., Lopez, A., Vegas, H. & Paoli, H. The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis 21, 77–91 (1975).
Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).
Segrest, J. P. et al. Apolipoprotein B-100: conservation of lipid-associating amphipathic secondary structural motifs in nine species of vertebrates. J. Lipid Res. 39, 85–102 (1998).
Boren, J., Taskinen, M. R., Bjornson, E. & Packard, C. J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 19, 577–592 (2022).
Frank, P. G. & Lisanti, M. P. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr. Opin. Lipidol. 15, 523–529 (2004).
Fernandez-Hernando, C. et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 10, 48–54 (2009).
Article PubMed PubMed Central Google Scholar
Frank, P. G., Pavlides, S. & Lisanti, M. P. Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res. 335, 41–47 (2009).
Armstrong, S. M. et al. Novel assay for detection of LDL transcytosis across coronary endothelium reveals an unexpected role for SR-B1 [abstract]. Circulation 130 (Suppl. 2), A11607 (2014).
Kraehling, J. R. et al. Genome-wide RNAi screen ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016).
Article PubMed PubMed Central Google Scholar
Minick, C. R., Stemerman, M. G. & Insull, W. Jr Effect of regenerated endothelium on lipid accumulation in the arterial wall. Proc. Natl Acad. Sci. USA 74, 1724–1728 (1977).
Article PubMed PubMed Central Google Scholar
Minick, C. R., Stemerman, M. B. & Insull, W. Jr Role of endothelium and hypercholesterolemia in intimal thickening and lipid accumulation. Am. J. Pathol. 95, 131–158 (1979).
PubMed PubMed Central Google Scholar
Armstrong, S. M. et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc. Res. 108, 268–277 (2015).
Article PubMed PubMed Central Google Scholar
Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).
Article PubMed PubMed Central Google Scholar
Sessa, W. C. Estrogen reduces LDL (low-density lipoprotein) transcytosis. Arterioscler. Thromb. Vasc. Biol. 38, 2276–2277 (2018).
Article PubMed PubMed Central Google Scholar
Ghaffari, S., Naderi Nabi, F., Sugiyama, M. G. & Lee, W. L. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler. Thromb. Vasc. Biol. 38, 2283–2294 (2018).
Mathur, P., Ostadal, B., Romeo, F. & Mehta, J. L. Gender-related differences in atherosclerosis. Cardiovasc. Drugs Ther. 29, 319–327 (2015).
Bian, F., Yang, X. Y., Xu, G., Zheng, T. & Jin, S. CRP-induced NLRP3 inflammasome activation increases LDL transcytosis across endothelial cells. Front. Pharmacol. 10, 40 (2019).
Article PubMed PubMed Central Google Scholar
Jia, X. et al. VCAM-1-binding peptide targeted cationic liposomes containing NLRP3 siRNA to modulate LDL transcytosis as a novel therapy for experimental atherosclerosis. Metabolism 135, 155274 (2022).
Arsenault, B. J., Carpentier, A. C., Poirier, P. & Despres, J. P. Adiposity, type 2 diabetes and atherosclerotic cardiovascular disease risk: use and abuse of the body mass index. Atherosclerosis 394, 117546 (2024).
Bartels, E. D., Christoffersen, C., Lindholm, M. W. & Nielsen, L. B. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression. Circ. Res. 117, 933–942 (2015).
Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors – a review. Cardiovasc. Res. 114, 35–52 (2018).
van den Berg, B. M., Spaan, J. A., Rolf, T. M. & Vink, H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290, H915–H920 (2006).
Lewis, J. C., Taylor, R. G., Jones, N. D., St Clair, R. W. & Cornhill, J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab. Invest. 46, 123–138 (1982).
Cancel, L. M., Ebong, E. E., Mensah, S., Hirschberg, C. & Tarbell, J. M. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252, 136–146 (2016).
Article PubMed PubMed Central Google Scholar
Banerjee, S., Mwangi, J. G., Stanley, T. K., Mitra, R. & Ebong, E. E. Regeneration and assessment of the endothelial glycocalyx to address cardiovascular disease. Ind. Eng. Chem. Res. 60, 17328–17347 (2021).
Faber, M. The human aorta; sulfate-containing polyuronides and the deposition of cholesterol. Arch. Pathol. 48, 342–350 (1949).
Camejo, G. et al. Differences in the structure of plasma low-density lipoproteins and their relationship to the extent of interaction with arterial wall-components. Ann. N. Y. Acad. Sci. 275, 153–168 (1976).
Camejo, G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv. Lipid Res. 19, 1–53 (1982).
留言 (0)