Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors

Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Denk, F., McMahon, S. B. & Tracey, I. Pain vulnerability: a neurobiological perspective. Nat. Neurosci. 17, 192–200 (2014).

Article  CAS  PubMed  Google Scholar 

Peirs, C. & Seal, R. P. Neural circuits for pain: recent advances and current views. Science 354, 578–584 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manto, M. et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11, 457–487 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain. 9, 463–484 (2005).

Article  PubMed  Google Scholar 

Borsook, D., Moulton, E. A., Tully, S., Schmahmann, J. D. & Becerra, L. Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum 7, 252–272 (2008).

Article  CAS  PubMed  Google Scholar 

Coombes, S. A. & Misra, G. Pain and motor processing in the human cerebellum. Pain 157, 117–127 (2016).

Article  PubMed  Google Scholar 

Moulton, E. A., Schmahmann, J. D., Becerra, L. & Borsook, D. The cerebellum and pain: Passive integrator or active participator? Brain Res. Rev. 65, 14–27 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, R. R., Donnelly, C. R. & Nedergaard, M. Astrocytes in chronic pain and itch. Nat. Rev. Neurosci. 20, 667–685 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watkins, L. R., Milligan, E. D. & Maier, S. F. Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455 (2001).

Article  CAS  PubMed  Google Scholar 

Brockhaus, J. & Deitmer, J. W. Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J. Physiol. 545, 581–593 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saab, A. S. et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science 337, 749–753 (2012).

Article  CAS  PubMed  Google Scholar 

Wang, F. S., Xu, Q. W., Wang, W. S., Takano, T. & Nedergaard, M. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc. Natl Acad. Sci. USA 109, 7911–7916 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon, H. et al. Development of a spontaneous pain indicator based on brain cellular calcium using deep learning. Exp. Mol. Med. 54, 1179–1187 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekar, L. K., He, W. & Nedergaard, M. Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb. Cortex 18, 2789–2795 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Llorca-Torralba, M., Borges, G., Neto, F., Mico, J. A. & Berrocoso, E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 338, 93–113 (2016).

Article  CAS  PubMed  Google Scholar 

Fuxe, K., Agnati, L. F., Marcoli, M. & Borroto-Escuela, D. O. Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem. Res. 40, 2600–2614 (2015).

Article  CAS  PubMed  Google Scholar 

Zoli, M. et al. The emergence of the volume transmission concept. Brain Res Brain Res Rev. 26, 136–147 (1998).

Article  CAS  PubMed  Google Scholar 

Carlson, E. S. et al. Catecholaminergic innervation of the lateral nucleus of the cerebellum modulates cognitive behaviors. J. Neurosci. 41, 3512–3530 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu, Y. et al. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178, 27–43.e19 (2019).

Article  CAS  PubMed  Google Scholar 

Unverdi, M. & Alsayouri, K. Neuroanatomy, cerebellar dysfunction. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK545251 (2022).

Ye, L. et al. Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nat. Commun. 11, 6157 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Z. Z. et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 21, 1326–1331 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sawynok, J., Reid, A. & Meisner, J. Pain behaviors produced by capsaicin: influence of inflammatory mediators and nerve injury. J. Pain. 7, 134–141 (2006).

Article  CAS  PubMed  Google Scholar 

Huang, T. et al. Identifying the pathways required for coping behaviours associated with sustained pain. Nature 565, 86–90 (2019).

Article  CAS  PubMed  Google Scholar 

Nimmerjahn, A., Mukamel, E. A. & Schnitzer, M. J. Motor behavior activates Bergmann glial networks. Neuron 62, 400–412 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kol, A. et al. Astrocytes contribute to remote memory formation by modulating hippocampal–cortical communication during learning. Nat. Neurosci. 23, 1229–1239 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292.e20 (2019).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif