AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

Terry, A. R. & Hay, N. Fuelling cancer cells. Nat. Rev. Endocrinol. 15, 71–72 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, B. et al. Measuring tumor cycling hypoxia and angiogenesis using a side-firing fiber optic probe. J. Biophotonics 7, 552–564 (2014).

Article  CAS  PubMed  Google Scholar 

Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

Article  CAS  PubMed  Google Scholar 

Chappell, J. C., Payne, L. B. & Rathmell, W. K. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J. Clin. Invest. 129, 442–451 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

Article  PubMed Central  Google Scholar 

Liu, M. et al. Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth. J. Exp. Med. 217, e20191226 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yang, R. et al. Identification of purine biosynthesis as an NADH-sensing pathway to mediate energy stress. Nat. Commun. 13, 7031 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Missiaen, R., Lesner, N. P. & Simon, M. C. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J. 42, e112067 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, R., Ying, G. & Li, B. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming. Front. Med. 15, 679–692 (2021).

Article  PubMed  Google Scholar 

Sun, L., Suo, C., Li, S. T., Zhang, H. & Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg Effect. Biochim. Biophys. Acta Rev. Cancer 1870, 51–66 (2018).

Article  CAS  PubMed  Google Scholar 

Mugabo, Y. et al. Identification of a mammalian glycerol-3-phosphate phosphatase: role in metabolism and signaling in pancreatic beta-cells and hepatocytes. Proc. Natl Acad. Sci. USA 113, E430–E439 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen, S. et al. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. 82, 205–244 (2002).

Article  CAS  PubMed  Google Scholar 

Zhang, L. & Tew, K. D. Reductive stress in cancer. Adv. Cancer Res 152, 383–413 (2021).

Article  CAS  PubMed  Google Scholar 

Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billiard, J. et al. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab. 1, 19 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Kim, W. et al. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab. 29, 856–870.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obukowicz, M. G. et al. Novel, selective Δ6 or Δ5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. J. Pharmacol. Exp. Ther. 287, 157–166 (1998).

CAS  PubMed  Google Scholar 

Graziano, F. et al. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J. 17, 258–264 (2017).

Article  CAS  PubMed  Google Scholar 

Finley, L. W. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19, 416–428 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell, J. L. et al. Oncological implications of hypoxia inducible factor-1α (HIF-1α) expression. Cancer Treat. Rev. 32, 407–416 (2006).

Article  PubMed  Google Scholar 

Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

Article  CAS  PubMed  Google Scholar 

Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grandjean, G. et al. Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights aldolase A as a therapeutic target. Cancer Res. 76, 4259–4269 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cascone, T. et al. Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy. Cell Metab. 27, 977–987.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou, X. et al. Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1). J. Mol. Biol. 357, 858–869 (2006).

Article  CAS  PubMed  Google Scholar 

Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

Article  CAS  PubMed  Google Scholar 

Schaffer, B. E. et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 22, 907–921 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190–201 (2016).

Article  CAS  PubMed  Google Scholar 

Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif