Nuclear speckles regulate functional programs in cancer

Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

Article  CAS  PubMed  Google Scholar 

Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dopie, J., Sweredoski, M. J., Moradian, A. & Belmont, A. S. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol. 219, e201910207 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

Article  PubMed  Google Scholar 

Ilik, İ. et al. SON and SRRM2 are essential for nuclear speckle formation. eLife 9, e60579 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fortes, P. et al. Identification and characterization of RED120: A conserved PWI domain protein with links to splicing and 3′-end formation. FEBS Lett. 581, 3087–3097 (2007).

Article  CAS  PubMed  Google Scholar 

Kim, J., Han, K. Y., Khanna, N., Ha, T. & Belmont, A. S. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J. Cell Sci. 132, jcs226563 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dion, W. et al. Four-dimensional nuclear speckle phase separation dynamics regulate proteostasis. Sci. Adv. 8, eabl4150 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivera, C. et al. Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics Chromatin 14, 51 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raina, K. & Rao, B. J. Mammalian nuclear speckles exhibit stable association with chromatin: a biochemical study. Nucleus 13, 58–73 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faber, G. P., Nadav-Eliyahu, S. & Shav-Tal, Y. Nuclear speckles—a driving force in gene expression. J. Cell Sci. 135, jcs259594 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e724 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y., Plutz, M. & Belmont, A. S. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol. 191, 711–719 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138–1144 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jolly, C., Usson, Y. & Morimoto, R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl Acad. Sci. USA 96, 6769–6774 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L. et al. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res. 31, 251–264 (2020).

Article  CAS  PubMed  Google Scholar 

Hu, Y., Kireev, I., Plutz, M., Ashourian, N. & Belmont, A. S. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J. Cell Biol. 185, 87–100 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander, K. A. et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell 81, 1666–1681.e1666 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, J. M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regan-Fendt, K. E. & Izumi, K. Nuclear speckleopathies: developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum. Genet. 143, 529–544 (2023).

Article  PubMed  Google Scholar 

Shen, C. & Kaelin, W. G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18–25 (2013).

Article  CAS  PubMed  Google Scholar 

Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).

Article  CAS  Google Scholar 

Waterman, M. S. & Eggert, M. A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723–728 (1987).

Article  CAS  PubMed  Google Scholar 

Gutiérrez, L., Caballero, N., Fernández‐Calleja, L., Karkoulia, E. & Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 72, 89–105 (2020).

Article  PubMed  Google Scholar 

Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

Article  CAS 

留言 (0)

沒有登入
gif