Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).
Article CAS PubMed PubMed Central Google Scholar
Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).
Article CAS PubMed Google Scholar
Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).
Article PubMed PubMed Central Google Scholar
Saitoh, N. et al. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890 (2004).
Article CAS PubMed PubMed Central Google Scholar
Dopie, J., Sweredoski, M. J., Moradian, A. & Belmont, A. S. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol. 219, e201910207 (2020).
Article CAS PubMed PubMed Central Google Scholar
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
Ilik, İ. et al. SON and SRRM2 are essential for nuclear speckle formation. eLife 9, e60579 (2020).
Article CAS PubMed PubMed Central Google Scholar
Fortes, P. et al. Identification and characterization of RED120: A conserved PWI domain protein with links to splicing and 3′-end formation. FEBS Lett. 581, 3087–3097 (2007).
Article CAS PubMed Google Scholar
Kim, J., Han, K. Y., Khanna, N., Ha, T. & Belmont, A. S. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J. Cell Sci. 132, jcs226563 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dion, W. et al. Four-dimensional nuclear speckle phase separation dynamics regulate proteostasis. Sci. Adv. 8, eabl4150 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rivera, C. et al. Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics Chromatin 14, 51 (2021).
Article CAS PubMed PubMed Central Google Scholar
Raina, K. & Rao, B. J. Mammalian nuclear speckles exhibit stable association with chromatin: a biochemical study. Nucleus 13, 58–73 (2022).
Article CAS PubMed PubMed Central Google Scholar
Faber, G. P., Nadav-Eliyahu, S. & Shav-Tal, Y. Nuclear speckles—a driving force in gene expression. J. Cell Sci. 135, jcs259594 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).
Article CAS PubMed PubMed Central Google Scholar
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e724 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hu, Y., Plutz, M. & Belmont, A. S. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol. 191, 711–719 (2010).
Article CAS PubMed PubMed Central Google Scholar
Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138–1144 (2014).
Article CAS PubMed PubMed Central Google Scholar
Jolly, C., Usson, Y. & Morimoto, R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl Acad. Sci. USA 96, 6769–6774 (1999).
Article CAS PubMed PubMed Central Google Scholar
Zhang, L. et al. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res. 31, 251–264 (2020).
Article CAS PubMed Google Scholar
Hu, Y., Kireev, I., Plutz, M., Ashourian, N. & Belmont, A. S. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. J. Cell Biol. 185, 87–100 (2009).
Article CAS PubMed PubMed Central Google Scholar
Alexander, K. A. et al. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell 81, 1666–1681.e1666 (2021).
Article CAS PubMed PubMed Central Google Scholar
Brown, J. M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008).
Article CAS PubMed PubMed Central Google Scholar
Regan-Fendt, K. E. & Izumi, K. Nuclear speckleopathies: developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum. Genet. 143, 529–544 (2023).
Shen, C. & Kaelin, W. G. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18–25 (2013).
Article CAS PubMed Google Scholar
Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).
Article CAS PubMed PubMed Central Google Scholar
Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).
Waterman, M. S. & Eggert, M. A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J. Mol. Biol. 197, 723–728 (1987).
Article CAS PubMed Google Scholar
Gutiérrez, L., Caballero, N., Fernández‐Calleja, L., Karkoulia, E. & Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 72, 89–105 (2020).
Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).
Article CAS PubMed PubMed Central Google Scholar
Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).
留言 (0)