Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: from structure to potential clinical applications. J Med Chem. 2005;48(17):5383–403.
Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab. 2011;22(11):458–66.
Wang YD, Chen WD, Huang W. FXR, a target for different diseases. Histol Histopathol. 2008;
Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81(5):687–93.
Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci. 2004;101(10):3668–73.
PubMed PubMed Central Google Scholar
Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem. 2003;278(1):104–10.
Anderson KM, Gayer CP. The pathophysiology of farnesoid X receptor (FXR) in the GI tract: inflammation, barrier function and innate immunity. Cells. 2021;10(11):3206.
PubMed PubMed Central Google Scholar
Jiao Y, Lu Y, Li XY. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin. 2015;36(1):44–50.
Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18(5):335–47.
Nafeer SA, Zalzala M. Possible Amelioration of the Severity of Nutritional Steatohepatitis by Guggulsterone in Mice: guggulsterone and steatohepatitis in mice. Iraqi J Pharm Sci (P-ISSN 1683-3597 E-ISSN 2521-3512). 2019;28(1):17–23.
Gupta NA, Karpen SJ. Mechanisms of bile formation and cholestasis. Cambridge: Liver Dis Child Cambridge Univ Press; 2014. p. 24–31.
Cai SY, Boyer JL. The role of bile acids in cholestatic liver injury. Ann Transl Med. 2021;9(8):737.
PubMed PubMed Central Google Scholar
Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem. 2001;276(45):42549–56.
Li J, Pircher PC, Schulman IG, Westin SK. Regulation of complement C3 expression by the bile acid receptor FXR. J Biol Chem. 2005;280(9):7427–34.
Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276(31):28857–65.
Wang YD, Chen WD, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18(11):1087–95.
Thomas AM, Hart SN, Kong B, Fang J, Zhong X, Guo GL. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology. 2010;51(4):1410–9.
Lee J, Seok S, Yu P, Kim K, Smith Z, Rivas-Astroza M, et al. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology. 2012;56(1):108–17.
Myant NB, Mitropoulos KA. Cholesterol 7α-hydroxylase. J Lipid Res. 1977;18(2):135–53.
Li T, Chiang JYL. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009(1): 501739.
PubMed PubMed Central Google Scholar
Russell DW, Setchell KDR. Bile acid biosynthesis. Biochemistry. 1992;31(20):4737–49.
Lambou-Gianoukos S, Heller SJ. Lithogenesis and bile metabolism. Surg Clin North Am. 2008;88(6):1175–94.
Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95.
PubMed PubMed Central Google Scholar
Makino I, Nakagawa S, Mashimo K. Conjugated and unconjugated serum bile acid levels in patients with hepatobiliary diseases. Gastroenterology. 1969;56(6):1033–9.
Hardison WGM. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 1978;75(1):71–5.
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56(6):1085–99.
PubMed PubMed Central Google Scholar
Krishnan S, Alden N, Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 2015;36:137–45.
PubMed PubMed Central Google Scholar
Bove KE, Daugherty CC, Tyson W, Mierau G, Heubi JE, Balistreri WF, et al. Bile acid synthetic defects and liver disease. Pediatr Dev Pathol. 2000;3(1):1–16.
Schwarz M. Pathways and defects of bile acid synthesis: insights from in vitro and in vivo experimental models. Drug Discov Today Dis Model. 2004;1(3):205–12.
Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72(1):137–74.
Björkhem I. Mechanism of degradation of the steroid side chain in the formation of bile acids. J Lipid Res. 1992;33(4):455–71.
Axelson M, SjÖvall J. Potential bile acid precursors in plasma—possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990;36(6):631–40.
Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617.
PubMed PubMed Central Google Scholar
Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol. 2018;9:939.
PubMed PubMed Central Google Scholar
Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, et al. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell. 2003;11(4):1093–100.
Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. Curr Res Pharmacol Drug Discov. 2024;6: 100177.
PubMed PubMed Central Google Scholar
Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97(2):177–83.
Atshan DA, Zalzala MH. Possible protective effect of nicardipine on anit induce cholestasis in rat. Farmacia. 2024;72(1):140–8.
Song K, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology. 2009;49(1):297–305.
Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, et al. Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Liver Physiol. 2005;289(5):G798-805.
Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005;25(10):2020–30.
Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007;48(12):2664–72.
Zollner G, Trauner M. Mechanisms of cholestasis. Clin Liver Dis. 2008;12(1):1–26.
Pérez-Pineda SI, Baylón-Pacheco L, Espíritu-Gordillo P, Tsutsumi V, Rosales-Encina JL. Effect of bile acids on the expression of MRP3 and MRP4: an In vitro study in HepG2 cell line. Ann Hepatol. 2021;24: 100325.
Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol. 2006;2(3):351–66.
Xiang D, Yang J, Liu Y, He W, Zhang S, Li X, et al. Calculus bovis sativus improves bile acid homeostasis via farnesoid X receptor-mediated signaling in rats with estrogen-induced cholestasis. Front Pharmacol. 2019;10:48.
PubMed PubMed Central Google Scholar
Al-khfajy WS, Kathem SH, Aboddy AA, Hatem SF, Zalzala MH, Arif IS. Farnesoid X receptor is an exciting new perspective target for treatment of diverse pathological disorders. J Pharm Sci Res. 2018;10(9):2292–6.
留言 (0)