Farnesoid X Receptor-Mediated Bile Acids Regulation in Cholestasis

Pellicciari R, Costantino G, Fiorucci S. Farnesoid X receptor: from structure to potential clinical applications. J Med Chem. 2005;48(17):5383–403.

PubMed  Google Scholar 

Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab. 2011;22(11):458–66.

PubMed  Google Scholar 

Wang YD, Chen WD, Huang W. FXR, a target for different diseases. Histol Histopathol. 2008;

Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81(5):687–93.

PubMed  Google Scholar 

Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci. 2004;101(10):3668–73.

PubMed  PubMed Central  Google Scholar 

Zhang Y, Kast-Woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem. 2003;278(1):104–10.

PubMed  Google Scholar 

Anderson KM, Gayer CP. The pathophysiology of farnesoid X receptor (FXR) in the GI tract: inflammation, barrier function and innate immunity. Cells. 2021;10(11):3206.

PubMed  PubMed Central  Google Scholar 

Jiao Y, Lu Y, Li XY. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin. 2015;36(1):44–50.

PubMed  Google Scholar 

Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18(5):335–47.

PubMed  Google Scholar 

Nafeer SA, Zalzala M. Possible Amelioration of the Severity of Nutritional Steatohepatitis by Guggulsterone in Mice: guggulsterone and steatohepatitis in mice. Iraqi J Pharm Sci (P-ISSN 1683-3597 E-ISSN 2521-3512). 2019;28(1):17–23.

Google Scholar 

Gupta NA, Karpen SJ. Mechanisms of bile formation and cholestasis. Cambridge: Liver Dis Child Cambridge Univ Press; 2014. p. 24–31.

Google Scholar 

Cai SY, Boyer JL. The role of bile acids in cholestatic liver injury. Ann Transl Med. 2021;9(8):737.

PubMed  PubMed Central  Google Scholar 

Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem. 2001;276(45):42549–56.

PubMed  Google Scholar 

Li J, Pircher PC, Schulman IG, Westin SK. Regulation of complement C3 expression by the bile acid receptor FXR. J Biol Chem. 2005;280(9):7427–34.

PubMed  Google Scholar 

Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001;276(31):28857–65.

PubMed  Google Scholar 

Wang YD, Chen WD, Moore DD, Huang W. FXR: a metabolic regulator and cell protector. Cell Res. 2008;18(11):1087–95.

PubMed  Google Scholar 

Thomas AM, Hart SN, Kong B, Fang J, Zhong X, Guo GL. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology. 2010;51(4):1410–9.

PubMed  Google Scholar 

Lee J, Seok S, Yu P, Kim K, Smith Z, Rivas-Astroza M, et al. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology. 2012;56(1):108–17.

PubMed  Google Scholar 

Myant NB, Mitropoulos KA. Cholesterol 7α-hydroxylase. J Lipid Res. 1977;18(2):135–53.

PubMed  Google Scholar 

Li T, Chiang JYL. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009;2009(1): 501739.

PubMed  PubMed Central  Google Scholar 

Russell DW, Setchell KDR. Bile acid biosynthesis. Biochemistry. 1992;31(20):4737–49.

PubMed  Google Scholar 

Lambou-Gianoukos S, Heller SJ. Lithogenesis and bile metabolism. Surg Clin North Am. 2008;88(6):1175–94.

PubMed  Google Scholar 

Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95.

PubMed  PubMed Central  Google Scholar 

Makino I, Nakagawa S, Mashimo K. Conjugated and unconjugated serum bile acid levels in patients with hepatobiliary diseases. Gastroenterology. 1969;56(6):1033–9.

PubMed  Google Scholar 

Hardison WGM. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 1978;75(1):71–5.

PubMed  Google Scholar 

Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56(6):1085–99.

PubMed  PubMed Central  Google Scholar 

Krishnan S, Alden N, Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 2015;36:137–45.

PubMed  PubMed Central  Google Scholar 

Bove KE, Daugherty CC, Tyson W, Mierau G, Heubi JE, Balistreri WF, et al. Bile acid synthetic defects and liver disease. Pediatr Dev Pathol. 2000;3(1):1–16.

PubMed  Google Scholar 

Schwarz M. Pathways and defects of bile acid synthesis: insights from in vitro and in vivo experimental models. Drug Discov Today Dis Model. 2004;1(3):205–12.

Google Scholar 

Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72(1):137–74.

PubMed  Google Scholar 

Björkhem I. Mechanism of degradation of the steroid side chain in the formation of bile acids. J Lipid Res. 1992;33(4):455–71.

PubMed  Google Scholar 

Axelson M, SjÖvall J. Potential bile acid precursors in plasma—possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990;36(6):631–40.

PubMed  Google Scholar 

Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617.

PubMed  PubMed Central  Google Scholar 

Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol. 2018;9:939.

PubMed  PubMed Central  Google Scholar 

Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, et al. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell. 2003;11(4):1093–100.

PubMed  Google Scholar 

Atshan DA, Zalzala MH. Papaverine attenuates the progression of alpha naphthylisothiocyanate induce cholestasis in rats. Curr Res Pharmacol Drug Discov. 2024;6: 100177.

PubMed  PubMed Central  Google Scholar 

Makishima M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci. 2005;97(2):177–83.

PubMed  Google Scholar 

Atshan DA, Zalzala MH. Possible protective effect of nicardipine on anit induce cholestasis in rat. Farmacia. 2024;72(1):140–8.

Google Scholar 

Song K, Li T, Owsley E, Strom S, Chiang JYL. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology. 2009;49(1):297–305.

PubMed  Google Scholar 

Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, et al. Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Liver Physiol. 2005;289(5):G798-805.

Google Scholar 

Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol. 2005;25(10):2020–30.

PubMed  Google Scholar 

Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007;48(12):2664–72.

PubMed  Google Scholar 

Zollner G, Trauner M. Mechanisms of cholestasis. Clin Liver Dis. 2008;12(1):1–26.

PubMed  Google Scholar 

Pérez-Pineda SI, Baylón-Pacheco L, Espíritu-Gordillo P, Tsutsumi V, Rosales-Encina JL. Effect of bile acids on the expression of MRP3 and MRP4: an In vitro study in HepG2 cell line. Ann Hepatol. 2021;24: 100325.

PubMed  Google Scholar 

Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol. 2006;2(3):351–66.

PubMed  Google Scholar 

Xiang D, Yang J, Liu Y, He W, Zhang S, Li X, et al. Calculus bovis sativus improves bile acid homeostasis via farnesoid X receptor-mediated signaling in rats with estrogen-induced cholestasis. Front Pharmacol. 2019;10:48.

PubMed  PubMed Central  Google Scholar 

Al-khfajy WS, Kathem SH, Aboddy AA, Hatem SF, Zalzala MH, Arif IS. Farnesoid X receptor is an exciting new perspective target for treatment of diverse pathological disorders. J Pharm Sci Res. 2018;10(9):2292–6.

留言 (0)

沒有登入
gif