Transcriptional Scenario of Altered Glycosylation in HPV-Associated Cervical Cancer

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinicians. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  Google Scholar 

Zur HH. Papillomaviruses in the causation of human cancers—a brief historical account. Virology. 2009;384(2):260–5. https://doi.org/10.1016/j.virol.2008.11.046.

Article  CAS  Google Scholar 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinicians. 2018;68(6):394–424.

Google Scholar 

LaVigne AW, Triedman SA, Randall TC, Trimble EL, Viswanathan AN. Cervical cancer in low and middle income countries: addressing barriers to radiotherapy delivery. Gynecologic oncology reports. 2017;1(22):16–20. https://doi.org/10.1016/j.gore.2017.08.004.

Article  Google Scholar 

Zoldoš V, Novokmet M, Bečeheli I, Lauc G. Genomics and epigenomics of the human glycome. Glycoconj J. 2013;30:41–50. https://doi.org/10.1007/s10719-012-9397-y.

Article  CAS  PubMed  Google Scholar 

Tian H, Yu JL, Chu X, Guan Q, Liu J, Liu Y. Unraveling the role of C1GALT1 in abnormal glycosylation and colorectal cancer progression. Front Oncol. 2024. https://doi.org/10.3389/fonc.2024.1389713.

Article  PubMed  PubMed Central  Google Scholar 

Vajaria BN, Patel PS. Glycosylation: a hallmark of cancer? Glycoconj J. 2017;34:147–56. https://doi.org/10.1007/s10719-016-9755-2.

Article  CAS  PubMed  Google Scholar 

Costa AF, Campos D, Reis CA, Gomes C. Targeting glycosylation: a new road for cancer drug discovery. Trends in cancer. 2020;6(9):757–66. https://doi.org/10.1016/j.trecan.2020.04.002.

Article  CAS  PubMed  Google Scholar 

Xu Z, Zhang Y, Ocansey DK, Wang B, Mao F. Glycosylation in cervical cancer: new insights and clinical implications. Front Oncol. 2021;16(11): 706862. https://doi.org/10.3389/fonc.2021.706862.

Article  CAS  Google Scholar 

Thobias AR, Patel KA, Gokani R, Parekh C, Desai A, Patel JB, Patel PS. Prevalence of human papilloma virus infection in cervical cancer patients from Western region of India. Indian J Gynecol Oncol. 2019;17:1–6. https://doi.org/10.3390/diagnostics13172765.

Article  CAS  Google Scholar 

Qi F, Isaji T, Duan C, Yang J, Wang Y, Fukuda T, Gu J. ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2, 3-sialylation of target proteins. FASEB J. 2020;34(1):881–97. https://doi.org/10.1096/fj.201901793R.

Article  CAS  PubMed  Google Scholar 

Cui HX, Wang H, Wang Y, Song J, Tian HU, Xia C, Shen Y. ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol Rep. 2016;36(6):3317–24. https://doi.org/10.3892/or.2016.5180.

Article  CAS  PubMed  Google Scholar 

Gretschel S, Haensch W, Schlag PM, Kemmner W. Clinical relevance of sialyltransferases ST6GAL-I and ST3GAL-III in gastric cancer. Oncology. 2003;65(2):139–45. https://doi.org/10.1159/000072339.

Article  CAS  PubMed  Google Scholar 

Chen SY, Sinha P, Last A, Ettyreddy A, Kallogjeri D, Pipkorn P, Rich JT, Zevallos JP, Paniello R, Puram SV, Van Abel K. Outcomes of patients with single-node metastasis of human papillomavirus-related oropharyngeal cancer treated with transoral surgery. JAMA Otolaryngol-Head & Neck Surgery. 2021;147(1):16–22. https://doi.org/10.1001/jamaoto.2020.3870.

Article  Google Scholar 

Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu X, Yuan Q, Yang D, Wang S. ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3β/β-catenin signaling pathway. Oncotarget. 2016;7(40):65374. https://doi.org/10.18632/oncotarget.11699.

Article  PubMed  PubMed Central  Google Scholar 

Rao TC, Beggs RR, Ankenbauer KE, Hwang J, Ma VP, Salaita K, Bellis SL, Mattheyses AL. ST6Gal-I–mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion. J Biol Chem. 2022. https://doi.org/10.1016/j.jbc.2022.101726.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Pan C, Zhou L, Cai Z, Zhao S, Yu D. Knockdown of ST6Gal-I increases cisplatin sensitivity in cervical cancer cells. BMC Cancer. 2016;16:1–2. https://doi.org/10.1186/s12885-016-2981-y.

Article  CAS  Google Scholar 

Fobian SF, Mei X, Crezee J, Snoek BC, Steenbergen RD, Hu J, Ten Hagen TL, Vermeulen L, Stalpers LJ, Oei AL. Increased human papillomavirus viral load is correlated to higher severity of cervical disease and poorer clinical outcome: A systematic review. J Med Virol. 2024;96(6): e29741. https://doi.org/10.1002/jmv.29741.

Article  CAS  PubMed  Google Scholar 

Wang X, Huang X, Zhang Y. Involvement of human papillomaviruses in cervical cancer. Front Microbiol. 2018;28(9):2896. https://doi.org/10.3389/fmicb.2018.02896.

Article  Google Scholar 

Gao HF, Wang QY, Zhang K, Chen LY, Cheng CS, Chen H, Meng ZQ, Zhou SM, Chen Z. Overexpressed N-fucosylation on the cell surface driven by FUT3, 5, and 6 promotes cell motilities in metastatic pancreatic cancer cell lines. Biochem Biophys Res Commun. 2019;511(2):482–9. https://doi.org/10.1016/j.bbrc.2019.02.092.

Article  CAS  PubMed  Google Scholar 

Sadeghzadeh Z, Khosravi A, Jazi MS, Asadi J. Upregulation of Fucosyltransferase 3, 8 and protein O-Fucosyltransferase 1, 2 genes in esophageal cancer stem-like cells (CSLCs). Glycoconj J. 2020;37:319–27. https://doi.org/10.1007/s10719-020-09917-z.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif