Insights for miR-9, miR-21, and miR-34a Expression Levels and Their Cross-Talk with TNF-α, IL-1β, and Nrf2 Levels in Diabetic Nephropathy Patients

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2021;183:109119.

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization. The top 10 causes of death. http://www.WHO.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death

Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, et al. Diabetes mellitus: classification, mediators, and complications; a gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023;168:115734.

Article  CAS  PubMed  Google Scholar 

Negeem ZR, Moneim AA, Mahmoud B, Ahmed AA, Hasona NA. Association of microRNA-192, pentraxin-3, and transforming growth factor-beta1 with estimated glomerular filtration rate in adults with diabetic nephropathy. Int J Diabetes Dev Ctries. 2024;44:812–21.

Article  CAS  Google Scholar 

Sun H, Chen T, Li X, Zhu Y, Zhang S, He P, et al. The relevance of the non-invasive biomarkers lncRNA GAS5/miR-21 ceRNA regulatory network in the early identification of diabetes and diabetic nephropathy. Diabetol Metab Syndr. 2023;15:197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khalil EH, Shaker OG, Hasona NA. Impact of rs2107425 polymorphism and expression of lncH19 and miR-200a on the susceptibility of Colorectal Cancer. Ind J Clin Biochem. 2023;38:331–7.

Article  CAS  Google Scholar 

Fu J, Imani S, Wu Y, Wu C. MicroRNA-34 family in cancers: role, mechanism, and therapeutic potential. Cancers (Basel). 2023;15(19):4723.

Article  CAS  PubMed  Google Scholar 

Margaritis K, Margioula-Siarkou G, Giza S, Kotanidou EP, Tsinopoulou VR, Christoforidis A, et al. Micro-RNA implications in type-1 diabetes mellitus: a review of literature. Int J Mol Sci. 2021;22(22):12165.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Larrue R, Fellah S, Hennino F, Perrais M, Lionet A, Glowacki F, et al. The versatile role of miR-21 in renal homeostasis and diseases. Cells. 2022;11(21):3525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, et al. MicroRNA-34a: potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic. Front Cell Dev Biol. 2021;9:640587.

Article  PubMed  Google Scholar 

Liu Y, Zhao Q, Xi T, Zheng L, Li X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: implications in personalized medicine. Genes Dis. 2021;8(6):759–68.

Article  CAS  PubMed  Google Scholar 

Guo J, Yang P, Li F, Tang F, He X, Yu G, et al. MicroRNA: crucial modulator in purinergic signalling involved diseases. Purinergic Signalling. 2023;19(1):329–41.

Article  CAS  PubMed  Google Scholar 

Li C, Meng X, Wang L, Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: focus on the TGF-β/Smad signaling pathway. Front Pharmacol. 2023;14:1092148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Qahtani AA, Alhamlan FS, Ali A. Pro-inflammatory and anti-inflammatory interleukins in Infectious diseases: a comprehensive review. Trop Med Infect Dis. 2023;9(1):13.

Article  Google Scholar 

Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci Rep. 2021;11(1):1–11.

Article  Google Scholar 

Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, et al. Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: a possible general mechanism of resistance to therapy. Antioxidants. 2023;12(7):1371.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

Article  CAS  PubMed  Google Scholar 

Montgomery HAC, Dymock J. The determination of Nitrite in water. Analyst. 1961;86:414–6.

CAS  Google Scholar 

Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849–54.

Article  CAS  PubMed  Google Scholar 

Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8.

CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Hasona NA, Moneim AA, Mohammed EA, Abdul Twab NA, Abdel Azeem AA, Teryak GM, et al. Osteocalcin, miR-143, and miR-145 expression in long-standing type 1 diabetes mellitus and their correlation with HbA1c. Ind J Clin Biochem. 2024;39:421–8.

Article  CAS  Google Scholar 

Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114–34.

Article  CAS  PubMed  Google Scholar 

Hasona NA. Significance of cardiac and iron profile alteration in diabetic patients. Comp Clin Pathol. 2017;26:951–4.

Article  CAS  Google Scholar 

Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E et al. Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front Med 2020;7.

Caturano A, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahakyan G, Vejux A, Sahakyan N. The role of oxidative stress-mediated inflammation in the development of T2DM-induced diabetic nephropathy: possible preventive action of tannins and other oligomeric polyphenols. Molecules. 2021;27(24):9035.

Article  Google Scholar 

Alfadul H, Sabico S, Al-Daghri NM. The role of interleukin-1β in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol. 2022;13:901616.

Article  Google Scholar 

Araújo LS, Silva Torquato BG, Monteiro R, Martins S, Machado JR. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 2020;21:308.

Article  PubMed  PubMed Central  Google Scholar 

Mansoor G, Tahir M, Maqbool T, Abbasi SQ, Hadi F, Shakoori TA, et al. Increased expression of circulating stress markers. Inflamm Cytokines Decreased Antioxid Level Diabet Nephrop Med. 2022;58(11):1604.

Google Scholar 

Antar SA, Abdo W, Taha RS, Farage AE, El-Moselhy LE, Amer ME, et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci. 2022;291:120260.

Article  CAS  PubMed  Google Scholar 

Sun Q, Zeng J, Liu Y, Chen J, Zeng Q, Chen Y, et al. microRNA-9 and– 29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging. 2020;12:11446–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helal HG, Rashed MH, Abdullah OA, Salem TI, Daifalla A. MicroRNAs (– 146a,– 21 and– 34a) are diagnostic and prognostic biomarkers for diabetic retinopathy. Biomed J. 2021;44(6 Suppl 2):S242.

Article  CAS  PubMed  Google Scholar 

Ji Q, Han J, Wang L, Liu J, Dong Y, Zhu K, et al. MicroRNA-34a promotes apoptosis of retinal vascular endothelial cells by targeting SIRT1 in rats with diabetic retinopathy. Cell Cycle. 2020;19(21):2886–96.

Article  CAS 

留言 (0)

沒有登入
gif