Pyrethroid Levels Amplify Asthma Severity in Children via Elevating Eosinophils, IgE, and Compromising Lung Function

Johnson J, Abraham T, Sandhu M, Jhaveri D, Hostoffer R, Sher T. Differential diagnosis of asthma. Allergy Asthma. 2019;23:383. https://doi.org/10.1007/978-3-030-05147-1_17.

Article  Google Scholar 

Prüss-Ustün A, Wolf J, Corvalán C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. J Public Health. 2017;39(3):464–75. https://doi.org/10.1093/pubmed/fdw085.

Article  Google Scholar 

Zhang J, Smith KR. Indoor air pollution: a global health concern. Br Med Bull. 2003;68(1):209–25. https://doi.org/10.1093/bmb/ldg029.

Article  CAS  PubMed  Google Scholar 

Sly PD, Flack F. Susceptibility of children to environmental pollutants. Ann N Y Acad Sci. 2008;1140(1):163–83. https://doi.org/10.1196/annals.1454.017.

Article  CAS  PubMed  Google Scholar 

Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther. 2007;114(2):129–45. https://doi.org/10.1016/j.pharmthera.2007.01.011.

Article  CAS  PubMed  Google Scholar 

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. https://doi.org/10.3389/fpubh.2020.00014.

Article  PubMed  PubMed Central  Google Scholar 

Singh S, Verma J, Tiwari V, Kulshrestha MR. Association of pesticides with adolescent asthma and bronchial hyper-reactivity. In: Lifestyle diseases in adolescents: diseases, disorders, and preventive measures. Bentham Science Publishers. 2024;49–72. https://doi.org/10.2174/97898152744311240101

Tewari A. Respiratory system: Highly exposed yet under-reported organ in pyrethrin and pyrethroid toxicity. Toxicol Ind Health. 2024;40(11):622–35. https://doi.org/10.1177/0748233724127380.

Article  CAS  PubMed  Google Scholar 

Singh S, Kulshrestha MR, Pathak AK, Srivastava S, Singh A, Tiwari V. Transfluthrin is associated with high susceptibility to asthma in children with promoter variants of beta chain of high-affinity receptor IgE and tumour necrosis factors-α genes. Biochem Genet. 2024;62(4):2553–70. https://doi.org/10.1007/s10528-023-10555-x.

Article  CAS  PubMed  Google Scholar 

Broide DH. Molecular and cellular mechanisms of allergic disease. J Allergy Clin Immunol. 2001;108(2):S65-71. https://doi.org/10.1067/mai.2001.116436.

Article  CAS  PubMed  Google Scholar 

Chatkin J, Correa L, Santos U. External environmental pollution as a risk factor for asthma. Clin Rev Allergy Immunol. 2022;62(1):72–89. https://doi.org/10.1007/s12016-020-08830-5.

Article  PubMed  Google Scholar 

Wason SC, Julien R, Perry MJ, Smith TJ, Levy JI. Modeling exposures to organophosphates and pyrethroids for children living in an urban low-income environment. Environ Res. 2013;1(124):13–22. https://doi.org/10.1016/j.envres.2012.08.009.

Article  CAS  Google Scholar 

Weisel CP. Indoor and outdoor pyrethroid air concentrations. Pyre Insec 2020:227–43. https://doi.org/10.1007/698_2019_434

de Gennaro G, Dambruoso PR, Loiotile AD, Di Gilio A, Giungato P, Tutino M, et al. Indoor air quality in schools. Environ Chem Lett. 2014;12:467–82. https://doi.org/10.1007/s10311-014-0470-6.

Article  CAS  Google Scholar 

Sadrizadeh S, Yao R, Yuan F, Awbi H, Bahnfleth W, Bi Y, et al. Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment. J Build Eng. 2022;57: 104908. https://doi.org/10.1016/j.jobe.2022.104908.

Article  Google Scholar 

Selgrade MK, Plopper CG, Gilmour MI, Conolly RB, Foos BS. Assessing the health effects and risks associated with children’s inhalation exposures—asthma and allergy. J Toxicol Environ Health Part A. 2008;71(3):196–207. https://doi.org/10.1080/15287390701597897.

Article  CAS  Google Scholar 

Murrison LB, Brandt EB, Myers JB, Hershey GK. Environmental exposures and mechanisms in allergy and asthma development. J Clin Investig. 2019;129(4):1504–15. https://doi.org/10.1172/JCI124612.

Article  PubMed  PubMed Central  Google Scholar 

D’amato G, Liccardi G, D’amato M, Holgate S. Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy. 2005;35(9):1113–24. https://doi.org/10.1111/j.1365-2222.2005.02328.x.

Article  CAS  PubMed  Google Scholar 

Hussain M, Liu G. Eosinophilic Asthma: pathophysiology and Therapeutic Horizons. Cells. 2024;13(5):384. https://doi.org/10.3390/cells13050384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venge P, Byström J, Carlson M, Håkansson L, Karawacjzyk C, Sevéus L, et al. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy. 1999;29(9):1172–86. https://doi.org/10.1046/j.1365-2222.1999.00542.x.

Article  CAS  PubMed  Google Scholar 

Bakakos A, Loukides S, Bakakos P. Severe eosinophilic asthma. J Clin Med. 2019;8(9):1375. https://doi.org/10.3390/jcm8091375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy. 2022;77(11):3267–92. https://doi.org/10.1111/all.15445.

Article  CAS  PubMed  Google Scholar 

Joubert IA, Geppert M, Johnson L, Mills-Goodlet R, Michelini S, Korotchenko E, et al. Mechanisms of particles in sensitization, effector function and therapy of allergic disease. Front Immunol. 2020;11:1334. https://doi.org/10.3389/fimmu.2020.01334.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McBrien CN, Menzies-Gow A. The biology of eosinophils and their role in asthma. Front Med. 2017;4:93. https://doi.org/10.3389/fmed.2017.00093.

Article  Google Scholar 

Pascual RM, Peters SP. Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J Allergy Clin Immunol. 2005;116(3):477–86. https://doi.org/10.1016/j.jaci.2005.07.011.

Article  PubMed  Google Scholar 

Doty RL, Cometto-Muñiz JE, Jalowayski AA, Dalton P, Kendal-Reed M, Hodgson M. Assessment of upper respiratory tract and ocular irritative effects of volatile chemicals in humans. Crit Rev Toxicol. 2004;34(2):85–142. https://doi.org/10.1080/10408440490269586.

Article  CAS  PubMed  Google Scholar 

Kim DY, Hii J, Chareonviriyaphap T. Transfluthrin and metofluthrin as effective repellents against pyrethroid-susceptible and pyrethroid-resistant Aedesaegypti (L.) (Diptera: Culicidae). Insects. 2023;14(9):767. https://doi.org/10.3390/insects14090767.

Article  PubMed  PubMed Central  Google Scholar 

Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016:1391–401. https://doi.org/10.2147/COPD.S106009

Abdulla Al-Mamun M, Ataur Rahman M, Habibur Rahman M, Hoque KM, Ferdousi Z, Matin MN, et al. Biochemical and histological alterations induced by the smoke of allethrin based mosquito coil on mice model. BMC Clin Pathol. 2017;17:1–8. https://doi.org/10.1186/s12907-017-0057-9.

Article  CAS  Google Scholar 

Gautier C, Charpin D. Environmental triggers and avoidance in the management of asthma. J Asthma Allergy. 2017;7:47–56. https://doi.org/10.2147/JAA.S121276.

Article  Google Scholar 

Hallit S, Raherison C, Waked M, Salameh P. Association between caregiver exposure to toxics during pregnancy and childhood-onset asthma: a case-control study. Iran J Allergy Asthma Immunol. 2017;23:488–500.

Google Scholar 

Azizi BH, Henry RL. The effects of indoor environmental factors on respiratory illness in primary school children in Kuala Lumpur. Int J Epidemiol. 1991;20(1):144–50. https://doi.org/10.1093/ije/20.1.144.

Article  CAS  PubMed  Google Scholar 

Rodgers K, Xiong S. Contribution of inflammatory mast cell mediators to alterations in macrophage function after malathion administration. Int J Immunopharmacol. 1997;19(3):149–56. https://doi.org/10.1016/S0192-0561(96)00073-2.

留言 (0)

沒有登入
gif