High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction

Alogna A, Koepp KE, Sabbah M, Espindola Netto JM, Jensen MD, Kirkland JL, Lam CSP, Obokata M, Petrie MC, Ridker PM, Sorimachi H, Tchkonia T, Voors A, Redfield MM, Borlaug BA (2023) Interleukin-6 in patients with heart failure and preserved ejection fraction. JACC Heart Fail 11:1549–1561. https://doi.org/10.1016/j.jchf.2023.06.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal SS, Ismahil MA, Goel M, Patel B, Hamid T, Rokosh G, Prabhu SD (2017) Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003688

Article  PubMed  PubMed Central  Google Scholar 

Benincasa G, Marfella R, Della Mura N, Schiano C, Napoli C (2020) Strengths and opportunities of network medicine in cardiovascular diseases. Circ J 84:144–152. https://doi.org/10.1253/circj.CJ-19-0879

Article  CAS  PubMed  Google Scholar 

Benincasa G, Maron BA, Affinito O, D’Alto M, Franzese M, Argiento P, Schiano C, Romeo E, Bontempo P, Golino P, Berrino L, Loscalzo J, Napoli C (2023) Association between circulating CD4+ T cell methylation signatures of network-oriented SOCS3 Gene and hemodynamics in patients suffering pulmonary arterial hypertension. J Cardiovasc Transl Res 16:17–30. https://doi.org/10.1007/s12265-022-10294-1

Article  PubMed  Google Scholar 

Benincasa G, Napoli C (2023) Unexplored horizons on sex bias and progression of heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Pharmacother 9:502–504. https://doi.org/10.1093/ehjcvp/pvad050

Article  PubMed  Google Scholar 

Carmona JJ, Accomando WP Jr, Binder AM, Hutchinson JN, Pantano L, Izzi B, Just AC, Lin X, Schwartz J, Vokonas PS, Amr SS, Baccarelli AA, Michels KB (2017) Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans. NPJ Genom Med 2:13. https://doi.org/10.1038/s41525-017-0012-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costantino S, Ambrosini S, Mohammed SA, Gorica E, Akhmedov A, Cosentino F, Ruschitzka F, Hamdani N, Paneni F (2022) A chromatin mark by SETD7 regulates myocardial inflammation in obesity-related heart failure with preserved ejection fraction. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac544.2883

Article  Google Scholar 

Das S, Frisk C, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, Kumar C, Asp M, Lundeberg J, Maret E, Persson H, Linde C, Persson B (2019) Transcriptomics of cardiac biopsies reveals differences in patients with or without diagnostic parameters for heart failure with preserved ejection fraction. Sci Rep 9:3179. https://doi.org/10.1038/s41598-019-39445-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, Leite-Moreira AF, Musters R, Niessen HW, Linke WA, Paulus WJ, Hamdani N (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4:312–324. https://doi.org/10.1016/j.jchf.2015.10.007

Article  PubMed  Google Scholar 

Hahn VS, Knutsdottir H, Luo X, Bedi K, Margulies KB, Haldar SM, Stolina M, Yin J, Khakoo AY, Vaishnav J, Bader JS, Kass DA, Sharma K (2021) Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation 143:120–134. https://doi.org/10.1161/CIRCULATIONAHA.120.050498

Article  CAS  PubMed  Google Scholar 

Hahn VS, Petucci C, Kim MS, Bedi KC Jr, Wang H, Mishra S, Koleini N, Yoo EJ, Margulies KB, Arany Z, Kelly DP, Kass DA, Sharma K (2023) Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation 147:1147–1161. https://doi.org/10.1161/CIRCULATIONAHA.122.061846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heusch G (2022) Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022(117):1. https://doi.org/10.1007/s00395-022-00909-8

Article  Google Scholar 

Infante T, Franzese M, Ruocco A, Schiano C, Affinito O, Pane K, Memoli D, Rizzo F, Weisz A, Bontempo P, Grimaldi V, Berrino L, Soricelli A, Mauro C, Napoli C (2022) ABCA1, TCF7, NFATC1, PRKCZ, and PDGFA DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome via network analysis. Epigenetics 17:547–563. https://doi.org/10.1080/15592294.2021.1939481

Article  PubMed  Google Scholar 

Infante T, Pepin ME, Ruocco A, Trama U, Mauro C, Napoli C (2024) CDK5R1, GSE1, HSPG2 and WDFY3 as indirect epigenetic-sensitive genes in atrial fibrillation. Eur J Clin Invest. https://doi.org/10.1111/eci.14135

Kittleson MM, Panjrath GS, Amancherla K, Davis LL, Deswal A, Dixon DL, Januzzi JL Jr, Yancy CW (2023) 2023 ACC Expert consensus decision pathway on management of heart failure with preserved ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 81:1835–1878. https://doi.org/10.1016/j.jacc.2023.03.393

Article  PubMed  Google Scholar 

Lanzer JD, Wienecke LM, Ramirez Flores RO, Zylla MM, Kley C, Hartmann N, Sicklinger F, Schultz JH, Frey N, Saez-Rodriguez J, Leuschner F (2024) Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction. Basic Res Cardiol. https://doi.org/10.1007/s00395-024-01074-w

Article  PubMed  PubMed Central  Google Scholar 

Laroumanie F, Douin-Echinard V, Pozzo J, Lairez O, Tortosa F, Vinel C, Delage C, Calise D, Dutaur M, Parini A, Pizzinat N (2014) CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129:2111–2124. https://doi.org/10.1161/CIRCULATIONAHA.113.007101

Article  CAS  PubMed  Google Scholar 

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Skibelund AK (2023) 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 44:3627–3639. https://doi.org/10.1093/eurheartj/ehad195

Article  CAS  PubMed  Google Scholar 

Mitter SS, Shah SJ, Thomas JD (2017) A Test in context: E/A and E/e’ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol 69:1451–1464. https://doi.org/10.1016/j.jacc.2016.12.037

Article  PubMed  Google Scholar 

Napoli C, Benincasa G, Donatelli F, Ambrosio G (2020) Precision medicine in distinct heart failure phenotypes: focus on clinical epigenetics. Am Heart J 224:113–128. https://doi.org/10.1016/j.ahj.2020.03.007

Article  CAS  PubMed  Google Scholar 

Oeing CU, Pepin ME, Saul KB, Agircan AS, Assenov Y, Merkel TS, Sedaghat-Hamedani F, Weis T, Meder B, Guan K, Plass C, Weichenhan D, Siede D, Backs J (2023) Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res Cardiol 118:9. https://doi.org/10.1007/s00395-022-00954-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pepin ME, Infante T, Benincasa G, Schiano C, Miceli M, Ceccarelli S, Megiorni F, Anastasiadou E, Della Valle G, Fatone G, Faenza M, Docimo L, Nicoletti GF, Marchese C, Wende AR, Napoli C (2020) Differential DNA methylation encodes proliferation and senescence programs in human adipose-derived mesenchymal stem cells. Front Genet 11:346. https://doi.org/10.3389/fgene.2020.00346

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarno F, Benincasa G, List M, Barabasi AL, Baumbach J, Ciardiello F, Filetti S, Glass K, Loscalzo J, Marchese C, Maron BA, Paci P, Parini P, Petrillo E, Silverman EK, Verrienti A, Altucci L, Napoli C, International Network Medicine Consortium (2021) Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin Epigenetics 13:66. https://doi.org/10.1186/s13148-021-01047-z

Article  PubMed  PubMed Central  Google Scholar 

Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EAV, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah S, Thorp EB, Hill JA (2022) Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat Cardiovasc Res 1:211–222. https://doi.org/10.1038/s44161-022-00032-w

Article  PubMed  PubMed Central  Google Scholar 

Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884

Article  PubMed  PubMed Central  Google Scholar 

Silverman EK, Schmidt HHHW, Anastasiadou E, Altucci L, Angelini M, Badimon L, Balligand JL, Benincasa G, Capasso G, Conte F, Di Costanzo A, Farina L, Fiscon G, Gatto L, Gentili M, Loscalzo J, Marchese C, Napoli C, Paci P, Petti M, Quackenbush J, Tieri P, Viggiano D, Vilahur G, Glass K, Baumbach J (2020) Molecular networks in network medicine: development and applications. Wiley Interdiscip Rev Syst Biol Med. https://doi.org/10.1002/wsbm.1489

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif