Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, Zhang Y, Sugiura A, Taylor BC, Hanna A, Zhang S, Amancherla K, Tai W, Wright JJ, Wei SC, Opalenik SR, Toren AL, Rathmell JC, Ferrell PB, Phillips EJ, Mallal S, Johnson DB, Allison JP, Moslehi JJ, Balko JM (2022) T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611:818–826. https://doi.org/10.1038/s41586-022-05432-3
Article CAS PubMed PubMed Central Google Scholar
Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, Gabrielson K, Iwakura Y, Rose NR, Cihakova D (2010) Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res 106:1646–1655. https://doi.org/10.1161/CIRCRESAHA.109.213157
Article CAS PubMed Google Scholar
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. https://doi.org/10.1038/nature04753
Article CAS PubMed Google Scholar
Van Der Borght K, Scott CL, Martens L, Sichien D, Van Isterdael G, Nindl V, Saeys Y, Boon L, Ludewig B, Gillebert TC, Lambrecht BN (2018) Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells. Front Immunol 9:2714. https://doi.org/10.3389/fimmu.2018.02714
Article CAS PubMed PubMed Central Google Scholar
Boughdad S, Latifyan S, Fenwick C, Bouchaab H, Suffiotti M, Moslehi JJ, Salem JE, Schaefer N, Nicod-Lalonde M, Costes J, Perreau M, Michielin O, Peters S, Prior JO, Obeid M (2021) 68Ga-DOTATOC PET/CT to detect immune checkpoint inhibitor-related myocarditis. J Immunother Cancer 9:e003594. https://doi.org/10.1136/jitc-2021-003594
Article PubMed PubMed Central Google Scholar
Cihakova D, Rose NR (2008) Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol 99:95–114. https://doi.org/10.1016/S0065-2776(08)00604-4
Article CAS PubMed Google Scholar
Eriksson U, Kurrer MO, Sonderegger I, Iezzi G, Tafuri A, Hunziker L, Suzuki S, Bachmaier K, Bingisser RM, Penninger JM, Kopf M (2003) Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J Exp Med 197:323–331. https://doi.org/10.1084/jem.20021788
Article CAS PubMed PubMed Central Google Scholar
Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9:1484–1490. https://doi.org/10.1038/nm960
Article CAS PubMed Google Scholar
Fujita R, Mizuno S, Sadahiro T, Hayashi T, Sugasawa T, Sugiyama F, Ono Y, Takahashi S, Ieda M (2023) Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience 26:106592. https://doi.org/10.1016/j.isci.2023.106592
Article CAS PubMed PubMed Central Google Scholar
Gergely TG, Kucsera D, Tóth VE, Kovács T, Sayour NV, Drobni ZD, Ruppert M, Petrovich B, Ágg B, Onódi Z, Fekete N, Pállinger É, Buzás EI, Yousif LI, Meijers WC, Radovits T, Merkely B, Ferdinandy P, Varga ZV (2023) Characterization of immune checkpoint inhibitor-induced cardiotoxicity reveals interleukin-17A as a driver of cardiac dysfunction after anti-PD-1 treatment. Br J Pharmacol 180:740–761. https://doi.org/10.1111/bph.15984
Article CAS PubMed Google Scholar
Gong Q, Huang J, Wu Q (2022) Integrated single-cell and RNA sequencing analysis identifies key immune cell and dendritic cells associated genes participated in myocarditis. J Immunol Res 2022:8655343. https://doi.org/10.1155/2022/8655343
Article CAS PubMed PubMed Central Google Scholar
Hilligan KL, Ronchese F (2020) Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 17:587–599. https://doi.org/10.1038/s41423-020-0465-0
Article CAS PubMed PubMed Central Google Scholar
Hsieh AC, Ruggero D (2010) Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 16:4914–4920. https://doi.org/10.1158/1078-0432.CCR-10-0433
Article CAS PubMed PubMed Central Google Scholar
Ji C, Roy MD, Golas J, Vitsky A, Ram S, Kumpf SW, Martin M, Barletta F, Meier WA, Hooper AT, Sapra P, Khan NK, Finkelstein M, Guffroy M, Buetow BS (2019) Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin Cancer Res 25:4735–4748. https://doi.org/10.1158/1078-0432.CCR-18-4083
Article CAS PubMed Google Scholar
Kishimoto C, Hiraoka Y, Takamatsu N, Takada H, Kamiya H, Ochiai H (2003) An in vivo model of autoimmune post-coxsackievirus B3 myocarditis in severe combined immunodeficiency mouse. Cardiovasc Res 60:397–403. https://doi.org/10.1016/j.cardiores.2003.07.002
Article CAS PubMed Google Scholar
Li S, Tajiri K, Murakoshi N, Xu D, Yonebayashi S, Okabe Y, Yuan Z, Feng D, Inoue K, Aonuma K, Shimoda Y, Song Z, Mori H, Huang H, Aonuma K, Ieda M (2021) Programmed death-ligand 2 deficiency exacerbates experimental autoimmune myocarditis in mice. Int J Mol Sci 22:1426. https://doi.org/10.3390/ijms22031426
Article CAS PubMed PubMed Central Google Scholar
Li S, Xu D, Murakoshi N, Yuan Z (2024) Autoantibody profiling of patients with immune checkpoint inhibitor-associated myocarditis : a pilot study. Front Immunol. https://doi.org/10.3389/fimmu.2024.1423622
Article PubMed PubMed Central Google Scholar
Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR (2008) Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol 181:2513–2521
Article CAS PubMed Google Scholar
Lv HJ, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA (2011) Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 121:1561–1573. https://doi.org/10.1172/JCI44583
Article CAS PubMed PubMed Central Google Scholar
Machino-ohtsuka T, Tajiri K, Kimura T, Sakai S, Sato A, Yoshida T, Hiroe M, Yasutomi Y, Aonuma K, Imanaka-yoshida K (2014) Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J Am Hear Assoc 3:e001052. https://doi.org/10.1161/JAHA.114.001052
Martineau Y, Azar R, Bousquet C, Pyronnet S (2013) Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene 32:671–677. https://doi.org/10.1038/onc.2012.116
Article CAS PubMed Google Scholar
Myers JM, Cooper LT, Kem DC, Stavrakis S, Kosanke SD, Shevach EM, Fairweather D, Stoner JA, Cox CJ, Cunningham MW (2016) Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1:e85851. https://doi.org/10.1172/jci.insight.85851
Article PubMed PubMed Central Google Scholar
Nakagomi Y, Tajiri K, Shimada S, Li S, Inoue K, Murakata Y, Murata M, Sakai S, Sato K, Ieda M (2022) Immune checkpoint inhibitor-related myositis overlapping with myocarditis: an institutional case series and a systematic review of literature. Front Pharmacol 13:884776. https://doi.org/10.3389/fphar.2022.884776
Article CAS PubMed PubMed Central Google Scholar
Nindl V, Maier R, Ratering D, De Giuli R, Züst R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, Rülicke T, Ludewig B (2012) Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol 42:2311–2321. https://doi.org/10.1002/eji.201142209
Article CAS PubMed Google Scholar
Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322. https://doi.org/10.1126/science.291.5502.319
留言 (0)