Aliano S, Cirmena G, Garuti A, Fugazza G, Bruzzone R, Rocco I, et al. HMGA2 overexpression in polycythemia vera with t(12;21)(q14;q22). Cancer Genet Cytogenet. 2007;177:115–9.
Andrieux J, Demory JL, Dupriez B, Quief S, Plantier I, Roumier C, et al. Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia. Genes Chromosomes Cancer. 2004;39:82–7.
Etienne A, Carbuccia N, Adelaide J, Bekhouche I, Remy V, Sohn C, et al. Rearrangements involving 12q in myeloproliferative disorders: possible role of HMGA2 and SOCS2 genes. Cancer Genet Cytogenet. 2007;176:80–88.
Martin SE, Sausen M, Joseph A, Kingham BF, Martin ES. Identification of a HMGA2-EFCAB6 gene rearrangement following next-generation sequencing in a patient with a t(12;22)(q14.3;q13.2) and JAK2V617F-positive myeloproliferative neoplasm. Cancer Genet. 2012;205:295–303.
Storlazzi CT, Albano F, Locunsolo C, Lonoce A, Funes S, Guastadisegni MC, et al. t(3;12)(q26;q14) in polycythemia vera is associated with upregulation of the HMGA2 gene. Leukemia. 2006;20:2190–2.
Ikeda K, Mason PJ, Bessler M. 3’UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood. 2011;117:5860–9.
Article PubMed PubMed Central Google Scholar
Ikeda K, Ogawa K, Takeishi Y. The role of HMGA2 in the proliferation and expansion of a hematopoietic cell in myeloproliferative neoplasms. Fukushima J Med Sci. 2012;58:91–100.
Harada-Shirado K, Ikeda K, Ogawa K, Ohkawara H, Kimura H, Kai T, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol. 2015;168:338–49.
Chen CC, You JY, Lung J, Huang CE, Chen YY, Leu YW, et al. Aberrant let7a/HMGA2 signaling activity with unique clinical phenotype in JAK2-mutated myeloproliferative neoplasms. Haematologica. 2017;102:509–18.
Article PubMed PubMed Central Google Scholar
Ueda K, Ikeda K, Ikezoe T, Harada-Shirado K, Ogawa K, Hashimoto Y, et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv. 2017;1:1001–15.
Article PubMed PubMed Central Google Scholar
Odero MD, Grand FH, Iqbal S, Ross F, Roman JP, Vizmanos JL, et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia. 2005;19:245–52.
Cleynen I, Van de Ven WJ. The HMGA proteins: a myriad of functions (Review). Int J Oncol. 2008;32:289–305.
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the other side: the AT-Hook DNA-binding domain allows nuclear factors to exploit the DNA minor groove. Int J Mol Sci. 2024;25:8863.
Parisi S, Piscitelli S, Passaro F, Russo T. HMGA proteins in stemness and differentiation of embryonic and adult stem cells. Int J Mol Sci. 2020;21:362.
Vignali R, Marracci S. HMGA genes and proteins in development and evolution. Int J Mol Sci. 2020;21:654.
Mansoori B, Mohammadi A, Ditzel HJ, Duijf PHG, Khaze V, Gjerstorff MF, et al. HMGA2 as a critical regulator in cancer development. Genes. 2021;12:269.
Khazem F, Zetoune AB. Decoding high mobility group A2 protein expression regulation and implications in human cancers. Discov Oncol. 2024;15:322.
Article PubMed PubMed Central Google Scholar
Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell. 1995;82:57–65.
Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 1995;10:436–44.
Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007;21:1025–30.
Article PubMed PubMed Central Google Scholar
Newman MA, Hammond SM. Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis. Int J Biochem Cell Biol. 2010;42:1330–3.
Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 2007;21:1125–38.
Article PubMed PubMed Central Google Scholar
Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41:843–8.
Article PubMed PubMed Central Google Scholar
Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL, et al. Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem. 2012;287:17386–97.
Article PubMed PubMed Central Google Scholar
Alajez NM, Shi W, Wong D, Lenarduzzi M, Waldron J, Weinreb I, et al. Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway. Oncotarget. 2012;3:1641–52.
Article PubMed PubMed Central Google Scholar
Lee YT, de Vasconcellos JF, Yuan J, Byrnes C, Noh SJ, Meier ER, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood. 2013;122:1034–41.
Article PubMed PubMed Central Google Scholar
de Vasconcellos JF, Fasano RM, Lee YT, Kaushal M, Byrnes C, Meier ER, et al. LIN28A expression reduces sickling of cultured human erythrocytes. PLoS ONE. 2014;9:e106924.
Article PubMed PubMed Central Google Scholar
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front Genet. 2017;8:31.
Article PubMed PubMed Central Google Scholar
Dutta A, Hutchison RE, Mohi G. Hmga2 promotes the development of myelofibrosis in Jak2(V617F) knockin mice by enhancing TGF-beta1 and Cxcl12 pathways. Blood. 2017;130:920–32.
Article PubMed PubMed Central Google Scholar
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.
Article PubMed PubMed Central Google Scholar
McGowan-Jordan J, Hastings RJ, More S. ISCN 2020: An International System for Human Cytogenomic Nomenclature. Karger AG; 2020.
Najfeld V, Montella L, Scalise A, Fruchtman S. Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br J Haematol. 2002;119:558–66.
Zimran E, Tripodi J, Rampal R, Rappoport F, Zirkiev S, Hoffman R, et al. Genomic characterization of spleens in patients with myelofibrosis. Haematologica. 2018;103:e446–9.
Article PubMed PubMed Central Google Scholar
Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78:477–492.e478.
Article PubMed PubMed Central Google Scholar
Li L, Kim JH, Lu W, Williams DM, Kim J, Cope L, et al. HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood. 2022;139:2797–815.
Article PubMed PubMed Central Google Scholar
Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018;36:1769–70.
Benton CB, Tanaka M, Wilson C, Pierce S, Zhou L, Cortes J, et al. Increased likelihood of post-polycythemia vera myelofibrosis in Ph-negative MPN patients with chromosome 12 abnormalities. Leuk Res. 2015;39:419–23.
留言 (0)