Qin Y et al (2023) An update on adipose-derived stem cells for regenerative medicine: where challenge meets opportunity. Adv Sci 10:2207334
Si Z et al (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765
Article CAS PubMed Google Scholar
Aprile D, Patrone D, Peluso G, Galderisi U (2024) Multipotent/pluripotent stem cell populations in stromal tissues and peripheral blood: exploring diversity, potential, and therapeutic applications. Stem Cell Res Ther 15:139
Article PubMed PubMed Central Google Scholar
Suh A et al (2019) Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Res Rev 54:100933
Zhang D et al (2021) CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death Differ 28:283–302
Huang Q et al (2017) Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46:6255–6275
Article CAS PubMed Google Scholar
Chen S et al (2019) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52:e12669
Article PubMed PubMed Central Google Scholar
Kolodziej M et al (2019) Influence of glucose and insulin in human adipogenic differentiation models with adipose-derived stem cells. Adipocyte 8:254–264
Article CAS PubMed PubMed Central Google Scholar
Hong P, Yang H, Wu Y, Li K, Tang Z (2019) The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 10:242
Article PubMed PubMed Central Google Scholar
Li K et al (2017) Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma: fat grafts with varying densities of ASCs and PRP. J Tissue Eng Regen Med 11:209–219
Article CAS PubMed Google Scholar
Ilieva M, Uchida S (2022) Long noncoding RNAs in induced pluripotent stem cells and their differentiation. Am J Physiol Cell Physiol 322:C769–C774
Article CAS PubMed Google Scholar
Mirzadeh Azad F, Polignano IL, Proserpio V, Oliviero S (2021) Long noncoding RNAs in human stemness and differentiation. Trends Cell Biol 31:542–555
Article CAS PubMed Google Scholar
Mattick JS et al (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24:430–447
Article CAS PubMed PubMed Central Google Scholar
Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220:e202009045
Article CAS PubMed PubMed Central Google Scholar
Yan P et al (2021) LncRNA Platr22 promotes super-enhancer activity and stem cell pluripotency. J Mol Cell Biol 13(4):295–313
Article CAS PubMed Google Scholar
Chen Z et al (2023) LncRNA HOTAIRM1 promotes dental follicle stem cell-mediated bone regeneration by regulating HIF-1α/KDM6/EZH2/H3K27me3 axis. J Cel Physiol 238:1542–1557
Chang M-W et al (2022) Enhanced myogenesis through lncFAM -mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 50:13026–13044
Article CAS PubMed PubMed Central Google Scholar
Huang M-J et al (2019) lncRNA ADAMTS9-AS2 controls human mesenchymal stem cell chondrogenic differentiation and functions as a ceRNA. Mol Ther - Nucleic Acids 18:533–545
Article CAS PubMed PubMed Central Google Scholar
Fu Y et al (2024) Exosome lncRNA IFNG-AS1 derived from mesenchymal stem cells of human adipose ameliorates neurogenesis and ASD-like behavior in BTBR mice. J Nanobiotechnol 22:66
Choi S-W, Kim H-W, Nam J-W (2019) The small peptide world in long noncoding RNAs. Brief Bioinform 20:1853–1864
Article CAS PubMed PubMed Central Google Scholar
Bonilauri B, Holetz FB, Dallagiovanna B (2021) Long non-coding RNAs associated with ribosomes in human adipose-derived stem cells: from RNAs to microproteins. Biomolecules 11(11):1673
Article CAS PubMed PubMed Central Google Scholar
Corvera S (2021) Cellular heterogeneity in adipose tissues. Annu Rev Physiol 83:257–278
Article CAS PubMed PubMed Central Google Scholar
Shih L, Davis MJ, Winocour SJ (2020) The science of fat grafting. Semin Plast Surg 34:005–010
Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114
Article CAS PubMed Google Scholar
Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S (2014) PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 25:293–302
Article CAS PubMed PubMed Central Google Scholar
Siersbæk R, Nielsen R, Mandrup S (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23:56–64
Bucky L, Percec I (2008) The science of autologous fat grafting: views on current and future approaches to neoadipogenesis. Aesthetic Surg J 28:313–321
Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81:715–736
Article CAS PubMed Google Scholar
Haylett WL, Ferris WF (2020) Adipocyte–progenitor cell communication that influences adipogenesis. Cell Mol Life Sci 77:115–128
Article CAS PubMed Google Scholar
Yu Y et al (2018) Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle 17:2374–2385
Article CAS PubMed PubMed Central Google Scholar
Zhang H et al (2022) LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ 29:351–365
Article CAS PubMed Google Scholar
Zhang L et al (2022) LncRNA MIR99AHG enhances adipocyte differentiation by targeting miR-29b-3p to upregulate PPARγ. Mol Cell Endocrinol 550:111648
留言 (0)