Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME (2020) The role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 93(1):7–15. https://doi.org/10.1159/000504669Epub 2020 Jan 8. PMID: 31914447
Article CAS PubMed Google Scholar
Barbieri F, Inzaghi E, Caruso Nicoletti M et al (2021) Biological clock and heredity in pubertal timing: what is new? Minerva Pediatr (Torino) 73(6):537–548. https://doi.org/10.23736/S2724-5276.21.06511-3
Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616. https://doi.org/10.1126/science.1191078
Article CAS PubMed PubMed Central Google Scholar
Hamilton JP (2011) Epigenetics: principles and practice. Dig Dis 29(2):130–135. https://doi.org/10.1159/000323874
Article PubMed PubMed Central Google Scholar
Sibuh BZ, Quazi S, Panday H et al (2023) The emerging role of epigenetics in Metabolism and Endocrinology. Biology (Basel) 12(2):256 Published 2023 Feb 6. https://doi.org/10.3390/biology12020256
Article CAS PubMed Google Scholar
Klein DA, Emerick JE, Sylvester JE, Vogt KS (2017) Disorders of Puberty: An Approach to diagnosis and management. Am Fam Physician 96(9):590–599 PMID: 29094880
Breehl L, Caban O (2023) Physiology, Puberty. [Updated 2023 Mar 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK534827/
Guarneri AM, Kamboj MK (2019) Physiology of pubertal development in females. Pediatr Med 2:42. https://doi.org/10.21037/pm.2019.07.03
Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P (2013) Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics 14:547. https://doi.org/10.1186/1471-2164-14-547
Article CAS PubMed PubMed Central Google Scholar
Lucaccioni L, Trevisani V, Boncompagni A, Marrozzini L, Berardi A, Iughetti L (2021) Minipuberty: looking back to Understand moving Forward. Front Pediatr 8:612235. https://doi.org/10.3389/fped.2020.612235PMID: 33537266; PMCID: PMC7848193
Article PubMed PubMed Central Google Scholar
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR (2024) Mini-puberty, physiological and disordered: consequences, and potential for therapeutic replacement. Endocr Rev 45(4):460–492. https://doi.org/10.1210/endrev/bnae003PMID: 38436980; PMCID: PMC11244267
Article PubMed PubMed Central Google Scholar
Avendaño MS, Vazquez MJ, Tena-Sempere M (2017) Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 23(6):737–763. https://doi.org/10.1093/humupd/dmx025
Article CAS PubMed Google Scholar
Manotas MC, González DM, Céspedes C, Forero C, Rojas Moreno AP (2022) Genetic and Epigenetic Control of Puberty. Sex Dev. 16(1):1–10. doi: 10.1159/000519039. Epub 2021 Oct 14. PMID: 34649256; PMCID: PMC8820423
Peralta M, Lizcano F (2024) Endocrine disruptors and metabolic changes: impact on Puberty Control. Endocr Pract. https://doi.org/10.1016/j.eprac.2024.01.006
Street ME, Ponzi D, Renati R et al (2023) Precocious puberty under stressful conditions: new understanding and insights from the lessons learnt from international adoptions and the COVID-19 pandemic. Front Endocrinol (Lausanne) 14:1149417 Published 2023 May 2. https://doi.org/10.3389/fendo.2023.1149417
Persani L, Bonomi M, Cools M, Dattani M, Dunkel L, Gravholt CH, Juul A (2021) ENDO-ERN expert opinion on the differential diagnosis of pubertal delay. Endocrine 71(3):681–688. https://doi.org/10.1007/s12020-021-02626-zEpub 2021 Jan 29. PMID: 33512657; PMCID: PMC8016789
Article CAS PubMed PubMed Central Google Scholar
Zhu J, Kusa TO, Chan YM (2018) Genetics of pubertal timing. Curr Opin Pediatr 30(4):532–540. https://doi.org/10.1097/MOP.0000000000000642
Article CAS PubMed PubMed Central Google Scholar
Howard SR (2019) The genetic basis of delayed puberty. Front Endocrinol (Lausanne) 10:423. https://doi.org/10.3389/fendo.2019.00423
Prosperi S, Chiarelli F (2023) Early and precocious puberty during the COVID-19 pandemic. Front Endocrinol (Lausanne) 13:1107911. https://doi.org/10.3389/fendo.2022.1107911PMID: 36699035; PMCID: PMC9868951
Chioma L, Chiarito M, Bottaro G, Paone L, Todisco T, Bizzarri C, Cappa M (2023) COVID-19 pandemic phases and female precocious puberty: the experience of the past 4 years (2019 through 2022) in an Italian tertiary center. Front Endocrinol (Lausanne) 14:1132769. https://doi.org/10.3389/fendo.2023.1132769PMID: 36926039; PMCID: PMC10011474
Bergman A (2013) United Nations Environment Programme., & World Health Organization. State of the science of endocrine disrupting chemicals– 2012 an assessment of the state of the science of endocrine disruptors. WHO
ECHA/EFSA (2018) (2018) Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J 16(6):5311
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS (2021) Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 35(5):101579. https://doi.org/10.1016/j.beem.2021.101579. PMID: 34563408
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS (2021) Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 17(2):83–96. https://doi.org/10.1038/s41574-020-00436-3
Article CAS PubMed Google Scholar
Jung MK, Choi HS, Suh J, Kwon A, Chae HW, Lee WJ, Yoo EG, Kim HS (2019) The analysis of endocrine disruptors in patients with central precocious puberty. BMC Pediatr 19(1):323. https://doi.org/10.1186/s12887-019-1703-4PMID: 31493798; PMCID: PMC6731581
Article CAS PubMed PubMed Central Google Scholar
Kim MR, Jung MK, Jee HM, Ha EK, Lee S, Han MY, Yoo EG (2024) The association between phthalate exposure and pubertal development. Eur J Pediatr 183(4):1675–1682. https://doi.org/10.1007/s00431-023-05416-z. PMID: 38206396
Colón I, Caro D, Bourdony CJ, Rosario O (2000) Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect 108:895–900
PubMed PubMed Central Google Scholar
Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M et al (2008) Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ Health 7:27. https://doi.org/10.1186/1476-069X-7-27
Article CAS PubMed PubMed Central Google Scholar
Ha M, Kwon HJ, Leem JH, Kim HC, Lee KJ, Park I et al (2014) Korean environmental health survey in children and adolescents (KorEHS-C): survey design and pilot study results on selected exposure biomarkers. Int J Hyg Environ Health 217:260–270. https://doi.org/10.1016/j.ijheh.2013.06.001
Article CAS PubMed Google Scholar
Smerieri A, Testa C, Lazzeroni P, Nuti F, Grossi E, Cesari S, Papini AM, Street ME (2015) Di-(2-ethylhexyl) phthalate metabolites in urine show age-related changes and associations with adiposity and parameters of insulin sensitivity in childhood. PLoS ONE 10(2):e0117831. https://doi.org/10.1371/journal.pone.0117831PMID: 25706863; PMCID: PMC4338209
Article CAS PubMed PubMed Central Google Scholar
Zhou X, Hu Y, Yang Z, Gong Z, Zhang S, Liu X et al (2022) Overweight/obesity in childhood and the risk of early puberty: a systematic review and meta-analysis. Front Pediatr 10:795596. https://doi.org/10.3389/fped.2022.795596
Article PubMed PubMed Central Google Scholar
Song Y, Kong Y, Xie X, Wang Y, Wang N (2023) Association between precocious puberty and obesity risk in children: a systematic review and meta-analysis. Front Pediatr 11:1226933. https://doi.org/10.3389/fped.2023.1226933PMID: 37635793; PMCID: PMC10456873
Article PubMed PubMed Central Google Scholar
Aghaee S, Deardorff J, Quesenberry CP, Greenspan LC, Kushi LH, Kubo A (2022) Associations between Childhood obesity and pubertal timing stratified by sex and Race/Ethnicity. Am J Epidemiol 191(12):2026–2036. https://doi.org/10.1093/aje/kwac148PMID: 35998084; PMCID: PMC10144668
留言 (0)