Agarwal AK, Raja A, Brown BD (2023) Chronic Obstructive Pulmonary Disease. In: StatPearls [Internet]. StatPearls Publishing Copyright ©2024, Treasure Island (FL): StatPearls Publishing; Bookshelf ID: NBK559281. https://www.ncbi.nlm.nih.gov/books/NBK559281/
Christenson SA, Smith BM, Bafadhel M, Putcha N (2022) Chronic obstructive pulmonary disease. Lancet 399:2227–2242. https://doi.org/10.1016/S0140-6736(22)00470-6
Disease GBD, Injury I, Prevalence C (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6
Boukhenouna S, Wilson MA, Bahmed K, Kosmider B (2018) Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev 2018:5730395. https://doi.org/10.1155/2018/5730395
Article CAS PubMed PubMed Central Google Scholar
Brightling C, Greening N (2019) Airway inflammation in COPD: progress to precision medicine. Eur Respir J 54(2):1900651. https://doi.org/10.1183/13993003.00651-2019
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C (2018) The other myeloperoxidase: emerging functions. Arch Biochem Biophys 649:1–14. https://doi.org/10.1016/j.abb.2018.03.037
Article CAS PubMed Google Scholar
Finicelli M, Digilio FA, Galderisi U, Peluso G (2022) The emerging role of macrophages in chronic obstructive pulmonary disease: the potential impact of oxidative stress and extracellular vesicle on macrophage polarization and function. Antioxidants (Basel) 11(3):464. https://doi.org/10.3390/antiox11030464
Guo P, Li R, Piao TH, Wang CL, Wu XL, Cai HY (2022) Pathological mechanism and targeted drugs of COPD. Int J Chron Obstruct Pulmon Dis 17:1565–1575. https://doi.org/10.2147/COPD.S366126
Article CAS PubMed PubMed Central Google Scholar
Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, Fitzgerald M, Barnes PJ (2002) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 283:L867–873. https://doi.org/10.1152/ajplung.00020.2002
Article CAS PubMed Google Scholar
Wallace AM, Sandford AJ, English JC, Burkett KM, Li H, Finley RJ, Muller NL, Coxson HO, Pare PD, Abboud RT (2008) Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema. COPD 5:13–23. https://doi.org/10.1080/15412550701817789
Gharib SA, Manicone AM, Parks WC (2018) Matrix metalloproteinases in emphysema. Matrix Biol 73:34–51. https://doi.org/10.1016/j.matbio.2018.01.018
Article CAS PubMed PubMed Central Google Scholar
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK et al (2021) Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 345:109568. https://doi.org/10.1016/j.cbi.2021.109568
Article CAS PubMed Google Scholar
DIS A, Gnemmi I, Dossena F, Ricciardolo FL, Maniscalco M, Lo Bello F, Balbi B (2022) Pathogenesis of COPD at the cellular and molecular level. Minerva Med 113:405–423. https://doi.org/10.23736/S0026-4806.22.07927-7
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, Qu YQ (2021) Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci 269:119090. https://doi.org/10.1016/j.lfs.2021.119090
Article CAS PubMed Google Scholar
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S (2022) New drugs under development for COPD. Minerva Med 113:471–496. https://doi.org/10.23736/S0026-4806.22.08024-7
Lakshmi SP, Reddy AT, Reddy RC (2017) Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 12:2141–2156. https://doi.org/10.2147/copd.S121416
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Hei R, Zhou Z, Xiao W, Liu X, Chen Y (2023) Macrophage polarization involved the inflammation of chronic obstructive pulmonary disease by S1P/HDAC1 signaling. Am J Cancer Res 13:4478–4489
CAS PubMed PubMed Central Google Scholar
Sharma P, Karnam K, Mahale A, Sedmaki K, Krishna Venuganti V, Kulkarni OP (2022) HDAC5 RNA interference ameliorates acute renal injury by upregulating KLF2 and inhibiting NALP3 expression in a mouse model of oxalate nephropathy. Int Immunopharmacol 112:109264. https://doi.org/10.1016/j.intimp.2022.109264
Article CAS PubMed Google Scholar
Leus NG, Zwinderman MR, Dekker FJ (2016) Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappaB-mediated inflammation. Curr Opin Chem Biol 33:160–168. https://doi.org/10.1016/j.cbpa.2016.06.019
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Ma G, Yang X (2019) HDAC5 promotes Mycoplasma pneumoniae-induced inflammation in macrophages through NF-kappaB activation. Life Sci 221:13–19. https://doi.org/10.1016/j.lfs.2019.02.004
Article CAS PubMed Google Scholar
Poralla L, Stroh T, Erben U, Sittig M, Liebig S, Siegmund B, Glauben R (2015) Histone deacetylase 5 regulates the inflammatory response of macrophages. J Cell Mol Med 19:2162–2171. https://doi.org/10.1111/jcmm.12595
Article CAS PubMed PubMed Central Google Scholar
Li B, Zhang L, Zhu L, Cao Y, Dou Z, Yu Q (2021) HDAC5 promotes intestinal sepsis via the Ghrelin/E2F1/NF-kappaB axis. FASEB J 35:e21368. https://doi.org/10.1096/fj.202001584R
Article CAS PubMed Google Scholar
Jiang Z, Tan J, Yuan Y, Shen J, Chen Y (2022) Semaglutide ameliorates lipopolysaccharide-induced acute lung injury through inhibiting HDAC5-mediated activation of NF-kappaB signaling pathway. Hum Exp Toxicol 41:9603271221125932. https://doi.org/10.1177/09603271221125931
Article CAS PubMed Google Scholar
Bockstiegel J, Wurnig SL, Engelhardt J, Enns J, Hansen FK, Weindl G (2023) Pharmacological inhibition of HDAC6 suppresses NLRP3 inflammasome-mediated IL-1beta release. Biochem Pharmacol 215:115693. https://doi.org/10.1016/j.bcp.2023.115693
Article CAS PubMed Google Scholar
Sedmaki K, Karnam K, Sharma P, Mahale A, Routholla G, Ghosh B, Prakash Kulkarni O (2022) HDAC6 inhibition attenuates renal injury by reducing IL-1beta secretion and RIP kinase mediated necroptosis in acute oxalate nephropathy. Int Immunopharmacol 110:108919. https://doi.org/10.1016/j.intimp.2022.108919
Article CAS PubMed Google Scholar
Ren Y, Su X, Kong L, Li M, Zhao X, Yu N, Kang J (2016) Therapeutic effects of histone deacetylase inhibitors in a murine asthma model. Inflamm Res 65:995–1008. https://doi.org/10.1007/s00011-016-0984-4
Article CAS PubMed PubMed Central Google Scholar
Costantini C, Bellet MM, Renga G, Stincardini C, Borghi M, Pariano M, Cellini B, Keller N, Romani L, Zelante T (2020) Tryptophan co-metabolism at the host-pathogen interface. Front Immunol 11:67. https://doi.org/10.3389/fimmu.2020.00067
Article CAS PubMed PubMed Central Google Scholar
Zelante T, Puccetti M, Giovagnoli S, Romani L (2021) Regulation of host physiology and immunity by microbial indole-3-aldehyde. Curr Opin Immunol 70:27–32. https://doi.org/10.1016/j.coi.2020.12.004
Article CAS PubMed Google Scholar
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. https://doi.org/10.1016/j.immuni.2013.08.003
Article CAS PubMed Google Scholar
Liu M, Wang Y, Xiang H, Guo M, Li S, Liu M, Yao J (2023) The tryptophan metabolite indole-3-carboxaldehyde alleviates mice with DSS-induced ulcerative colitis by balancing amino acid metabolism, inhibiting intestinal inflammation, and improving intestinal barrier function. Molecules 28(9):3704. https://doi.org/10.3390/molecules28093704
留言 (0)