Lancaster, M. A. Unraveling mechanisms of human brain evolution. Cell 187, 5838–5857 (2024).
Article CAS PubMed PubMed Central Google Scholar
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
Article CAS PubMed Google Scholar
Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).
Article CAS PubMed Google Scholar
Antón-Bolaños, N. et al. Brain chimeroids reveal individual susceptibility to neurotoxic triggers. Nature 631, 142–149 (2024).
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
Article CAS PubMed Google Scholar
Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D. & Livesey, F. J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).
Article CAS PubMed PubMed Central Google Scholar
Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. eLife 5, e18683 (2016).
Article PubMed PubMed Central Google Scholar
Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).
Article CAS PubMed PubMed Central Google Scholar
de Sousa, A. A. et al. Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb. Cortex 20, 966–981 (2010).
Dicke, U. & Roth, G. Neuronal factors determining high intelligence. Phil. Trans. R. Soc. B 371, 20150180 (2016).
Article PubMed PubMed Central Google Scholar
Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102.e19 (2021).
Article CAS PubMed PubMed Central Google Scholar
She, R. et al. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 186, 2977–2994.e23 (2023).
Article PubMed PubMed Central Google Scholar
Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).
Article CAS PubMed Google Scholar
Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).
Article CAS PubMed PubMed Central Google Scholar
Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384.e16 (2018).
Article CAS PubMed PubMed Central Google Scholar
Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173, 1356–1369.e22 (2018).
Article CAS PubMed PubMed Central Google Scholar
Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).
Article CAS PubMed Google Scholar
Boyd, J. L. et al. Human–chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25, 772–779 (2015).
Article CAS PubMed PubMed Central Google Scholar
Fischer, J. et al. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep. 23, e54728 (2022).
Article CAS PubMed PubMed Central Google Scholar
Haygood, R., Babbitt, C. C., Fedrigo, O. & Wray, G. A. Contrasts between adaptive coding and noncoding changes during human evolution. Proc. Natl Acad. Sci. USA 107, 7853–7857 (2010).
Article CAS PubMed PubMed Central Google Scholar
Parenti, I., Rabaneda, L. G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 43, 608–621 (2020).
Article CAS PubMed Google Scholar
Dang, L. T. et al. STRADA-mutant human cortical organoids model megalencephaly and exhibit delayed neuronal differentiation. Dev. Neurobiol. 81, 696–709 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, W. et al. Cerebral organoid and mouse models reveal a RAB39b–PI3K–mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev. 34, 580–597 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dhaliwal, N., Choi, W. W. Y., Muffat, J. & Li, Y. Modeling PTEN overexpression-induced microcephaly in human brain organoids. Mol. Brain 14, 131 (2021).
Article CAS PubMed PubMed Central Google Scholar
Omer Javed, A. et al. Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype. Cell Rep. 25, 368–382.e5 (2018).
Article CAS PubMed Google Scholar
Fair, S. R. et al. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 146, 387–404 (2023).
Wang, L. et al. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat. Commun. 11, 4038 (2020).
Article CAS PubMed PubMed Central Google Scholar
Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941 (2020).
Article CAS PubMed Google Scholar
Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449.e4 (2017).
Article CAS PubMed PubMed Central Google Scholar
Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller–Dieker syndrome. Cell Rep. 19, 50–59 (2017).
Article CAS PubMed Google Scholar
Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018).
留言 (0)