Muller, H. J. The remaking of chromosomes. Collecting Net, Woods Hole 13, 181–198 (1938).
McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl Acad. Sci. USA 25, 405–416 (1939).
Article CAS PubMed PubMed Central Google Scholar
McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).
Article CAS PubMed PubMed Central Google Scholar
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).
Article CAS PubMed Google Scholar
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).
Article CAS PubMed Google Scholar
Olovnikov, A. Principle of marginotomy in the synthesis of polynucleotides at a template. Dokl. Biochem. Biophys. 201, 394–397 (1971).
Olovnikov, A. M. Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol. 31, 443–448 (1996).
Article CAS PubMed Google Scholar
Watson, J. D. Origin of concatemeric T7 DNA. Nat. New Biol. 239, 197–201 (1972).
Article CAS PubMed Google Scholar
Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43, 405–413 (1985).
Article CAS PubMed Google Scholar
Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).
Article CAS PubMed PubMed Central Google Scholar
Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).
Article CAS PubMed Google Scholar
Prowse, K. R., Avilion, A. A. & Greider, C. W. Identification of a nonprocessive telomerase activity from mouse cells. Proc. Natl Acad. Sci. USA 90, 1493–1497 (1993).
Article CAS PubMed PubMed Central Google Scholar
Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).
Article CAS PubMed Google Scholar
Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).
Article CAS PubMed Google Scholar
Schmidt, T. T. et al. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat. Commun. 15, 5149 (2024).
Article CAS PubMed PubMed Central Google Scholar
d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).
Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).
Article CAS PubMed Google Scholar
Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).
Article CAS PubMed Google Scholar
Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).
Article CAS PubMed Google Scholar
Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002). This paper shows that TIF-induced cellular senescence relies on two checkpoint pathways in humans, p16INK4aand the p53–p21 pathway, but only on the latter in mouse models.
Article CAS PubMed PubMed Central Google Scholar
Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).
Article CAS PubMed Google Scholar
Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).
Article CAS PubMed PubMed Central Google Scholar
Maciejowski, J. & Lange, T. D. Telomeres in cancer: tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18, 175–186 (2017).
Article CAS PubMed PubMed Central Google Scholar
Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).
Article CAS PubMed PubMed Central Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).
Article CAS PubMed Google Scholar
Bertuch, A. A. The molecular genetics of the telomere biology disorders. RNA Biol. 13, 696–706 (2016).
Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).
Article PubMed PubMed Central Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997). This study generates a telomerase-activity-deficient mouse model through deletion of mTR. Successive inbreeding of these mice reveals a generational reduction in telomere sequence length, which eventually results in telomere dysfunction.
Article CAS PubMed Google Scholar
Lee, H.-W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).
Article CAS PubMed Google Scholar
Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).
Article CAS PubMed PubMed Central Google Scholar
He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rossiello, F., Jurk, D., Passos, J. F. & Fagagna, F. D. A. D. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).
留言 (0)