Origin, fate and function of extraembryonic tissues during mammalian development

Rossant, J. Development of the extraembryonic lineages. Semin. Dev. Biol. 6, 237–247 (1995).

Article  Google Scholar 

Thowfeequ, S. & Srinivas, S. Embryonic and extraembryonic tissues during mammalian development: shifting boundaries in time and space. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210255 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khorami-Sarvestani, S. et al. Placenta: an old organ with new functions. Front. Immunol. 15, 1385762 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ornoy, A. & Miller, R. K. Yolk sac development, function and role in rodent pregnancy. Birth Defects Res. 115, 1243–1254 (2023).

Article  CAS  PubMed  Google Scholar 

Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowotschin, S. et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia, W. & Xie, W. Rebooting the epigenomes during mammalian early embryogenesis. Stem Cell Rep. 15, 1158–1175 (2020).

Article  CAS  Google Scholar 

Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

Article  CAS  PubMed  Google Scholar 

Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

Article  CAS  PubMed  Google Scholar 

Lau, K. Y. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 29, 1445–1458.e8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 185, 3290–3306.e25 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

CAS  PubMed  PubMed Central  Google Scholar 

Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luque, A. V. et al. Integrated molecular-phenotypic profiling reveals metabolic control of morphological variation in stembryos. Preprint at bioRxiv https://doi.org/10.1101/2023.12.04.569921 (2023).

Watson, E. D. & Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology 20, 180–193 (2005).

Article  CAS  PubMed  Google Scholar 

Hemberger, M., Hanna, C. W. & Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21, 27–43 (2020).

Article  CAS  PubMed  Google Scholar 

Hemberger, M. Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 5, 24–29 (2010).

Article  CAS  PubMed  Google Scholar 

Ferner, K. & Mess, A. Evolution and development of fetal membranes and placentation in amniote vertebrates. Respir. Physiol. Neurobiol. 178, 39–50 (2011).

Article  PubMed  Google Scholar 

Sheng, G. & Foley, A. C. Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann. N. Y. Acad. Sci. 1271, 97–103 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, M. & Zernicka-Goetz, M. Principles of self-organization of the mammalian embryo. Cell 183, 1467–1478 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Firmin, J. et al. Mechanics of human embryo compaction. Nature 629, 646–651 (2024).

Article  CAS  PubMed  Google Scholar 

Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

Article  CAS  PubMed  Google Scholar 

Gerri, C. et al. A conserved role of the Hippo signalling pathway in initiation of the first lineage specification event across mammals. Development 150, dev201112 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

Article  CAS  PubMed  Google Scholar 

Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137, 395–403 (2010).

Article  CAS  PubMed  Google Scholar 

Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

Article  CAS  PubMed  Google Scholar 

Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bou, G. et al. OCT4 expression transactivated by GATA protein is essential for non-rodent trophectoderm early development. Cell Rep. 41, 111644 (2022).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif