Rossant, J. Development of the extraembryonic lineages. Semin. Dev. Biol. 6, 237–247 (1995).
Thowfeequ, S. & Srinivas, S. Embryonic and extraembryonic tissues during mammalian development: shifting boundaries in time and space. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210255 (2022).
Article CAS PubMed PubMed Central Google Scholar
Khorami-Sarvestani, S. et al. Placenta: an old organ with new functions. Front. Immunol. 15, 1385762 (2024).
Article CAS PubMed PubMed Central Google Scholar
Ornoy, A. & Miller, R. K. Yolk sac development, function and role in rodent pregnancy. Birth Defects Res. 115, 1243–1254 (2023).
Article CAS PubMed Google Scholar
Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).
Article CAS PubMed PubMed Central Google Scholar
Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).
Article CAS PubMed PubMed Central Google Scholar
Nowotschin, S. et al. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361–367 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).
Article CAS PubMed PubMed Central Google Scholar
Xia, W. & Xie, W. Rebooting the epigenomes during mammalian early embryogenesis. Stem Cell Rep. 15, 1158–1175 (2020).
Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).
Article CAS PubMed Google Scholar
Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).
Article CAS PubMed Google Scholar
Lau, K. Y. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 29, 1445–1458.e8 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 185, 3290–3306.e25 (2022).
Article CAS PubMed PubMed Central Google Scholar
Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).
CAS PubMed PubMed Central Google Scholar
Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).
Article CAS PubMed PubMed Central Google Scholar
Luque, A. V. et al. Integrated molecular-phenotypic profiling reveals metabolic control of morphological variation in stembryos. Preprint at bioRxiv https://doi.org/10.1101/2023.12.04.569921 (2023).
Watson, E. D. & Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology 20, 180–193 (2005).
Article CAS PubMed Google Scholar
Hemberger, M., Hanna, C. W. & Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 21, 27–43 (2020).
Article CAS PubMed Google Scholar
Hemberger, M. Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 5, 24–29 (2010).
Article CAS PubMed Google Scholar
Ferner, K. & Mess, A. Evolution and development of fetal membranes and placentation in amniote vertebrates. Respir. Physiol. Neurobiol. 178, 39–50 (2011).
Sheng, G. & Foley, A. C. Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development. Ann. N. Y. Acad. Sci. 1271, 97–103 (2012).
Article PubMed PubMed Central Google Scholar
Zhu, M. & Zernicka-Goetz, M. Principles of self-organization of the mammalian embryo. Cell 183, 1467–1478 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194 (2013).
Article CAS PubMed PubMed Central Google Scholar
Firmin, J. et al. Mechanics of human embryo compaction. Nature 629, 646–651 (2024).
Article CAS PubMed Google Scholar
Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).
Article CAS PubMed Google Scholar
Gerri, C. et al. A conserved role of the Hippo signalling pathway in initiation of the first lineage specification event across mammals. Development 150, dev201112 (2023).
Article CAS PubMed PubMed Central Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).
Article CAS PubMed Google Scholar
Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137, 395–403 (2010).
Article CAS PubMed Google Scholar
Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).
Article CAS PubMed Google Scholar
Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bou, G. et al. OCT4 expression transactivated by GATA protein is essential for non-rodent trophectoderm early development. Cell Rep. 41, 111644 (2022).
留言 (0)