McKinsey & Company (2024) What is AI (artificial intelligence)? https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai#/. Accessed 11 Jul 2024
Amisha, Malik P, Pathania M, Rathaur VK (2019) Overview of artificial intelligence in medicine. J Fam Med Prim Care 8:2328. https://doi.org/10.4103/jfmpc.jfmpc_440_19
French RM (2000) The Turing Test: the first 50 years. Trends Cogn Sci 4:115–122. https://doi.org/10.1016/s1364-6613(00)01453-4
Article CAS PubMed Google Scholar
Britannica, The Editors of Encyclopaedia (2024) John McCarthy. Accessed 17 Aug 2024. https://www.britannica.com/biography/John-McCarthy
Stanford University Human Centred Artificial Intelligence (2020) Artificial intelligence definitions. Stanford University. Accessed 11 Jul 2024. https://hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf
Landi H (2024) Shaping up to be a big year for healthcare AI companies. But some investors remain cautious. Fierce Healthcare. https://www.fiercehealthcare.com/ai-and-machine-learning/1-4-dollars-invested-healthcare-going-toward-companies-using-ai-some. Accessed 11 Jul 2024
Paul R, Hawkins SH, Balagurunathan Y et al (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2:388–395. https://doi.org/10.18383/j.tom.2016.00211
Article PubMed PubMed Central Google Scholar
Dembrower K, Crippa A, Colón E, Eklund M, Strand F, ScreenTrustCAD Trial Consortium (2023) Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit Health 5:e703–e711. https://doi.org/10.1016/S2589-7500(23)00153-X
Article CAS PubMed Google Scholar
Oo AM, Chu TS (2021) Bibliometric analysis of the top 100 cited articles in head and neck radiology. Acta Radiol Open. https://doi.org/10.1177/20584601211001815
Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE (1993) Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 187:81–87. https://doi.org/10.1148/radiology.187.1.8451441
Article CAS PubMed Google Scholar
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292:60–66. https://doi.org/10.1148/radiol.2019182716
Rodríguez-Ruiz A, Krupinski E, Mordang JJ (2019) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290:305–314. https://doi.org/10.1148/radiol.2018181371
Chen W, Giger ML, BickU (2006) A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad Radiol 13:63–72. https://doi.org/10.1016/j.acra.2005.08.035
Antropova N, Huynh BQ, Giger ML (2017) A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 44:5162–5171. https://doi.org/10.1002/mp.12453
Article CAS PubMed PubMed Central Google Scholar
Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52:434–440. https://doi.org/10.1097/rli.0000000000000358
Chen CM, Chou YH, Han KC et al (2003) Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 226:504–514. https://doi.org/10.1148/radiol.2262011843
Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY (2008) Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 15:1513–1525. 1016/j.acra.2008.06.005
Article PubMed PubMed Central Google Scholar
Zhou LQ, Wu XL, Huang SY (2024) Erratum for: Lymph node metastasis prediction from primary breast cancer US images using deep learning. Radiology. https://doi.org/10.1148/radiol.249009
Baker JA, Kornguth PJ, Lo JY, Williford ME, Floyd Jr CE (1995) Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 196:817–822. https://doi.org/10.1148/radiology.196.3.7644649
Article CAS PubMed Google Scholar
Tahmassebi A, Wengert GJ, HelbichTH et al (2019) Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol 54:110–117. https://doi.org/10.1097/RLI.0000000000000518
Article PubMed PubMed Central Google Scholar
Geras KJ, Mann RM, Moy L (2019) Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future perspectives. Radiology 293:246–259. https://doi.org/10.1148/radiol.2019182627
Lehman CD, Yala A, Schuster T (2019) Mammographic breast density assessment using deep learning: clinical implementation. Radiology 290:52–58. https://doi.org/10.1148/radiol.2018180694
Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297. https://doi.org/10.1148/radiol.2018181352
Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ (2019) Artificial intelligence in breast imaging. Clin Radiol 74:357–366. https://doi.org/10.1016/j.crad.2019.02.006
Article CAS PubMed Google Scholar
Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N (2020) Overview of radiomics in breast cancer diagnosis and prognostication. Breast 49:74–80. https://doi.org/10.1016/j.breast.2019.10.018
Han L, Zhu Y, Liu Z (2019) Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Eur Radiol 29:3820–3829. https://doi.org/10.1007/s00330-018-5981-2
Ayer T, Chhatwal J, Alagoz O, Kahn Jr CE, Woods RW, Burnside ES (2010) Informatics in radiology: comparison of logistic regression and artificial neural network models in breast cancer risk estimation. Radiographics 30:13–22. https://doi.org/10.1148/rg.301095057
Article PubMed PubMed Central Google Scholar
Fujioka T, Kubota K, Mori M et al (2019) Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol 37:466–472. https://doi.org/10.1007/s11604-019-00831-5
Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol 29:4825–4832. https://doi.org/10.1007/s00330-019-06186-9
Article PubMed PubMed Central Google Scholar
Yala A, Schuster T, Miles R, Barzilay R, Lehman C (2019) A deep learning model to triage screening mammograms: a simulation study. Radiology 293:38–46. https://doi.org/10.1148/radiol.2019182908
Conant EF, Toledano AY, Periaswamy S et al (2019) Improving accuracy and efficiency with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol Artif Intell 1:e180096. https://doi.org/10.1148/ryai.2019180096
Article PubMed PubMed Central Google Scholar
Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD (2018) High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology 286:810–818. https://doi.org/10.1148/radiol.2017170549
Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. https://doi.org/10.1259/bjr.20170576
Hu Q, Whitney HM, Giger ML (2020) A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci Rep 10:10536. https://doi.org/10.1038/s41598-020-67441-4
留言 (0)