MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH

Bantug GR, et al. The spectrum of T-cell metabolism in health and disease. Nat Rev Immunol. 2018;18:19–34.

Article  CAS  PubMed  Google Scholar 

Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol. 2011;11:109–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geltink RIK, et al. Unraveling the complex interplay between T-cell metabolism and function. Annu Rev Immunol. 2018;36:461–88.

Article  CAS  PubMed  Google Scholar 

O’Sullivan D, Pearce EL. Targeting T-cell metabolism for therapy. Trends Immunol. 2015;36:71–80.

Article  PubMed  PubMed Central  Google Scholar 

Reina-Campos M, et al. CD8(+) T-cell metabolism in infection and cancer. Nat Rev Immunol. 2021;21:718–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapman NM, et al. Metabolic coordination of T-cell quiescence and activation. Nat Rev Immunol. 2020;20:55–70.

Article  CAS  PubMed  Google Scholar 

O’Neill LA, et al. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–65.

Article  PubMed  PubMed Central  Google Scholar 

Pearce EL, et al. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

Article  PubMed  PubMed Central  Google Scholar 

MacIver NJ, et al. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shyer JA, et al. Metabolic signaling in T cells. Cell Res. 2020;30:649–59.

Article  PubMed  PubMed Central  Google Scholar 

Chi H. Regulation and function of mTOR signaling in T-cell fate decisions. Nat Rev Immunol. 2012;12:325–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao RR, et al. The mTOR kinase determines effector versus memory CD8+ T-cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67–78.

Article  PubMed  PubMed Central  Google Scholar 

Ray JP, et al. The Interleukin-2-mTORc1 Kinase axis defines the signaling, differentiation, and metabolism of T Helper 1 and follicular B helper T cells. Immunity. 2015;43:690–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verbist KC, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blagih J, et al. The energy sensor AMPK regulates T-cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41–54.

Article  CAS  PubMed  Google Scholar 

Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146:772–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208:1367–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang JQ, et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation. J Allergy Clin Immunol. 2016;137:231–45 e234.

Article  CAS  PubMed  Google Scholar 

Kishton RJ, et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 2016;23:649–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elia I, et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8(+) T cells. Cell Metab. 2022;34:1137–50 e1136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer K, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9.

Article  CAS  PubMed  Google Scholar 

Macintyre AN, et al. The glucose transporter Glut1 is selectively essential for CD4 T-cell activation and effector function. Cell Metab. 2014;20:61–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piotrowski JT, et al. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol Cell Biol. 2013;33:958–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berod L, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327–33.

Article  CAS  PubMed  Google Scholar 

Galluzzi L, et al. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829–46.

Article  CAS  PubMed  Google Scholar 

Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82.

Article  CAS  PubMed  Google Scholar 

Chang CH, et al. Posttranscriptional control of T-cell effector function by aerobic glycolysis. Cell. 2013;153:1239–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colell A, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell. 2007;129:983–97.

Article  CAS  PubMed  Google Scholar 

Liberti MV, et al. A predictive model for selective targeting of the warburg effect through GAPDH inhibition with a natural product. Cell Metab. 2017;26:648–659 e648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colell A, et al. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–81.

Article  CAS 

留言 (0)

沒有登入
gif